


This guide may be used to indicate appropriate statistical methods. It is advisable to read the details of all these tests after consulting this 
table

Design or aim of study Type of data/assumptions Statistical method

COMPARE TWO INDEPENDENT SAMPLES

Compare two means Continuous, Normal distribution, same variance t test for two independent means

Compare two proportions Categorical, two categories, all expected values greater than 5 Chi-squared test

Compare two proportions Categorical, two categories, some expected values less than 5 Fisher’s exact test

Compare distributions Ordinal Wilcoxon two-sample signed rank test 
equivalent to Mann Whitney U test

Compare time to an event (e.g. survival) 
in two groups

Continuous Logrank test

COMPARE SEVERAL INDEPENDENT SAMPLES

Compare several means Continuous, Normal distribution, same variance One-way analysis of variance

Compare time to an event (e.g. survival) 
in several groups

Continuous Logrank test

A guide to unifactorial statistical methods



COMPARE DIFFERENCES IN A PAIRED SAMPLE 

Test mean difference Continuous, Normal distribution for differences t test for two paired (matched) means

Compare two paired proportions Categorical, two categories (binary) McNemar’s test

Distribution of differences Ordinal, symmetrical distribution Wilcoxon matched pairs test

Distribution of differences Ordinal Sign test

RELATIONSHIPS BETWEEN TWO VARIABLES 

Test strength of linear relationship 
between two variables

Continuous, at least one 
has Normal distribution

Pearson’s correlation

Test strength of relationship between 
two variables

Ordinal Spearman’s rank correlation, Kendall’s 
tau (if many ties)

Examine nature of linear relationship 
between two variables

Continuous, residuals from Normal distribution, constant 
variance

Simple linear regression

Test association between two 
categorical variables

Categorical, more than two categories for either or both variables, 
at least 80% of expected frequencies greater than 5

Chi-squared test 

Test for trend in proportions Categorical, one variable has two categories and the other has 
several categories which are ordered, sample greater than 30

Chi-squared test for trend
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All health care professionals want to provide safe and effective care to 
their patients. This means that everyone has to keep up with the speed 
of innovation and be in a position to apply the fi ndings of new research. 
Historically individuals have tended to delegate the assessment of the 
quality of research to journal editors, the peer review system and guide-
line developers. However for many reasons this may not be suffi cient.  
All professionals have to make a judgement call on whether the research 
fi ndings or guideline recommendations that they are assessing are rel-
evant to the patient in front of them. They will have to decide whether 
the drug trial designed to determine the short term safety and effi cacy 
against placebo in a selected population in the USA is really relevant to 
the elderly, ethnically diverse population with multiple co-morbidities 
facing them on a Friday afternoon.

To make things even more complicated, many of the questions raised 
in day to day practice will never be answered by randomized controlled 
trials. So other methods need to be applied, all with their own challenges 
and potential biases. This means, like it or not, that a sound understanding 
of medical statistics is essential for all health professionals.

Many doctors and medical students fi nd statistics diffi cult to understand, 
and voice the need for a concise but thorough account of the subject.  
They plead for the statistical analysis to draw on real life situations and to 
use examples that they can understand. 

This book responds completely to that plea by providing an accessible 
format that allows individual topics to be easily found and understood. It 
takes the reader, not only through the theory of the underlying statistics, 
but also the practical steps to set up and interpret all the key research 
designs. The authors are an experienced academic medical statistician 
who has conducted many collaborative research studies and taught sta-
tistics to students and doctors (to a very high standard—I should know—
she taught me), and a junior academic doctor who has published his own 
work. They have written a book that meets all  the needs of doctors and 
students carrying out their own research, and for those appraising others’ 
research.

Professor Peter Littlejohns
Clinical and Public Health Director 

National Institute for Health and Clinical Excellence

Foreword
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To practice evidence-based medicine, doctors need to critically appraise 
research evidence. The majority of medical research involves quantita-
tive methods and so it is essential to be able to understand and interpret 
statistics. In addition, many doctors conduct research which requires the 
use of statistics throughout the research process – from design, to data 
collection and analysis, and to the interpretation and dissemination.

Doctors study statistics at undergraduate and postgraduate level and 
there is an increasing move towards teaching programmes that are based 
on real clinical problems and real data. However, in our experience both 
as teacher and former medical student, courses do not always fully equip 
doctors to critically appraise research evidence or to conduct research 
and communicate the fi ndings. We have written this book to help bridge 
this gap by covering a wide span of topics from research design, through 
collecting and handling data, to both simple and complex statistical 
analyses. 

We have aimed to be as comprehensive as possible in this handbook and 
so we have included all commonly-used statistical methods as well as 
more advanced methods such as multifactorial regression, mixed models, 
GEEs, and Bayesian models that are seen in medical papers. However, 
medical statistics is a broad and ever-growing discipline and so it is inevi-
table that some newer or less commonly-used topics have not found their 
way into this edition. For all methods we have provided clear guidance 
on when methods may be used and how the results of analyses are inter-
preted using examples from the medical literature and our own research. 
We have chosen to give formulae and worked examples for the ‘simpler’ 
methods as we know that the more mathematically minded readers may 
want to understand where the numbers come from. For those who do 
not wish to know, or who simply don’t have time, these can be ignored 
without loss of continuity. 

This book is written in the popular Oxford Handbook style with one topic 
per double page spread, providing easy access to discrete topics for busy 
doctors and students. Writing in this format has provided a challenge to us 
since many topics in medical statistics build on other topics and therefore 
assume prior knowledge. For this reason we have included many cross-
references to other sections of the book so that other relevant informa-
tion is clearly signposted. We have also included references for further 
reading where we believe that readers may wish to explore the topic 
in more detail. Writing any material in a punchy, brief style carries the 
danger of omitting material or ‘dumbing it down’. We have fought hard 
to avoid doing this, not excluding material but making the format both 
accessible and thorough. We hope that you agree that we have managed 
to make this work.

Preface
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2 CHAPTER 1 Research design

Introduction
It is important to understand the main issues involved in study design in 
order to be able to critically appraise existing work and to design new 
studies. In this chapter we describe the main features of the design of 
interventional and observational studies and the differences and simi-
larities between research and audit. We discuss when a sample size 
calculation is needed, describe the main principles of the calculations and 
outline the steps involved in preparing a study protocol. Most sections are 
illustrated with examples and we give particular attention to the statistical 
issues that arise in designing and appraising research. 



3INTRODUCTION TO RESEARCH 

Introduction to research 
Engaging with research 
At any one time a clinician or medical student who is engaging with quanti-
tative research may be doing so for one or more of the following reasons:

To critically appraise research reported by others• 
To conduct primary research that aims to answer a specifi c question • 
or questions, and thus generate new knowledge or extend existing 
knowledge
To gain research skills and experience, often as part of an educational • 
programme
To test the feasibility of a particular research design or technique• 

The following issues are important for all of these:
What is the study question or aim?• 
What design is appropriate to answer the question(s)? • 
What statistics are appropriate for the study?• 

Conducting and appraising primary research 
Primary research requires rigorous methods so that the design, data, and 
analysis provide sound results that stand up to scrutiny and add to current 
knowledge. Similarly when critically appraising research, it is important to 
have a solid understanding of good research methodology.

Conducting research as part of an educational programme
When research is conducted purely for educational purposes, such as 
with a medical student project, the main purpose is not to generate new 
knowledge but instead to provide practical training in research that will 
equip the individual to conduct sound primary research at a later stage. 

It is important that as far as possible, research projects conducted within 
an educational programme are carried out rigorously. However, since 
these research projects usually face constraints such as a narrow time 
frame and a limited budget, it may not be possible to fully meet the high 
standards set for primary research. For example, it may not be possible 
to recruit suffi cient subjects to satisfy standard sample size calculations in 
the time given for a student project. If the purpose of the research is truly 
educational and not primarily to further knowledge, and this is made clear 
in any reporting, then this is not a problem. 

Publishing research conducted as part of an educational 
programme
Although student projects are often limited in scope, they may be suf-
fi ciently novel and of a high enough standard to be published. This is to 
be encouraged to further experience of the publication process and to 
encourage high standards. For examples of student projects that have 
been published, see Peacock and Peacock1 and Peacock et al.2 

References
1 Peacock PJ, Peacock JL. Emergency call work-load, deprivation and population density: an inves-

tigation into ambulance services across England. J Public Health (Oxf) 2006; 28(2):111–15.
2 Peacock PJ, Peters TJ, Peacock JL. How well do structured abstracts refl ect the articles they 

summarize? European Science Editing 2009; 35(1):3–5.
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Research questions
Introduction
Research aims to establish new knowledge around a particular topic. The 
topic might arise out of the researcher’s own experience or interest, or 
from that of a mentor or senior, or it may be a topic commissioned by 
a funding body. Sometimes a research study follows on directly from a 
previous study, either conducted by the researcher themselves or another 
researcher, and on other occasions it may be a completely new topic. 

As the research idea grows, the researcher generates a specifi c 
question or set of questions that he/she wants to pursue. It can be quite 
diffi cult to focus down on specifi c questions if the topic is broad and there 
are many things that are interesting to explore. The scope of the study will 
determine how many questions can be investigated – an individual with no 
research funds may only be able to centre on one question, whereas one 
with a funded programme of research can investigate a number of related 
questions. 

Even when a particular study investigates many questions, it is important 
that each question is tightly framed so that the right data can be collected 
and the appropriate analyses conducted. If questions are too vague or too 
general then the study will be diffi cult to design and may not ultimately be 
able to answer the real questions of interest.

Research questions
These should be:

Specifi c•  with respect to time/place/subjects/condition as appropriate
Answerable•  such that the relevant data are available or able to be 
collected
Novel•  in some sense so that the study either makes a contribution to 
knowledge or extends existing knowledge
Relevant•  to current medicine 

Types of question
Most questions fall into one or more of the following categories:

Descriptive• , e.g. incidence/prevalence; trends/patterns; opinion/
knowledge; life history of disease
Evaluative• , e.g. effi cacy/safety of treatments or preventive 
programmes; may be comparative
Explanatory• , e.g. causes of disease; mechanisms for observed 
processes or actions or events
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Examples

What is the prevalence of diabetes mellitus in the population?• 
This is a simple descriptive study
How effective is infl uenza vaccination in the community-based • 
elderly?
This is a comparative study, comparing individuals who had vaccines with 
those who did not
Does lowering blood pressure reduce the risk of coronary • 
heart disease?
This is an evaluative study, investigating the effi cacy of lowering blood 
pressure
Is prognosis following stroke dependent on age at the time of • 
the event?
This is an observational study 
Why does smoking increase the risk of heart disease?• 
This is an explanatory study investigating the mechanism behind an 
observed relationship
What evidence is there for the effectiveness of antidepressants • 
in treating depression?
This study is a meta-analysis of existing interventional studies
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Interventional studies
Study designs

Interventional vs observational• 
Time-course• : prospective; retrospective; cross-sectional
Source of data• : new data; routine data; patient notes; existing data, 
e.g. secondary data analysis, meta-analysis

Intervention studies test the effect of a treatment or programme of 
care. The purpose is usually to test for effi cacy but in early drug trials, 
safety and dosage are established fi rst. 

No control group
Preliminary drug trials investigating • safety and tolerance are often 
uncontrolled and this is reasonable

Control group 
It is highly desirable to have a control or comparison group in • effi cacy 
studies to be able to demonstrate superiority or inferiority
For example it may be useful to know that a new drug lowers blood • 
pressure, but it is more important to know how it compares to 
medications already in common use, especially as existing drugs are 
likely to be cheaper

Historical controls
Patients given a new treatment are compared with patients who have • 
already been treated with an existing treatment regime and who at the 
time of testing the new treatment have already been treated, assessed, 
and discharged 
The comparison of the treatment group and the control group is • not 
concurrent and may be problematic as other factors change over 
time, such as hospital staff and patient mix 
Interpretation is diffi cult – it is impossible to be sure that any • 
differences observed between the new treatment group and the 
control group are solely due to the treatments received

Randomization between intervention and control group
This is the best way to ensure • comparisons are concurrent and 
unbiased (b Randomization in RCTs, p. 10)

When randomization is not possible
It is hard to test the effi cacy of a treatment that is widely used and • 
accepted against no treatment or a placebo.
For example, the use of adrenaline for cardiac arrest is generally 
accepted as effective. It would be diffi cult, if not impossible, to formally 
test this against a control treatment.



7INTERVENTIONAL STUDIES

Natural experiments
Individuals receive different interventions concurrently but in a non-• 
randomized manner

Example 1
The effect of the fl uoridation of drinking water may involve a comparison 
of subjects in areas where the water is subject to natural, artifi cial, or no 
fl uoridation. Subjects are not allocated to the different types of fl uorida-
tion; this is determined by where they live. 

Example 2 
The effect of treatment may be compared in patients who choose con-
servative surgery for breast cancer rather than radical surgery. Patients 
are not randomized. 

When intervention studies are unethical 
It is not ethical to experiment on humans when the intervention is • 
likely to cause harm
It is not ethical to test whether environmental agents cause harm, and • 
so observational studies are used to determine effects 
Natural experiments may allow a better comparison to be made of • 
individuals who are exposed and unexposed than a cross-sectional 
analysis. For example before and after studies have been used 
to compare health status before and after the introduction of the 
smoking ban in public places in USA and UK.1,2 In this way a reasonable 
assessment of the effect of passive smoke exposure was made.

Design and analysis for non-randomized studies and 
natural experiments 

Collect as much data as possible on the subjects’ key characteristics. • 
Use statistical analysis to adjust for these differences.• 
Note that, even with statistical adjustment, there may still be • 
differences between the groups that are unknown and so 
comparisons may still be biased. We probably won’t know.
Interpretation of non-randomized trials is diffi cult and fi rm • 
conclusions are hard to draw.

References
1 Eisner MD, Smith AK, Blanc PD. Bartenders’ respiratory health after establishment of smoke-

free bars and taverns. JAMA 1998; 280(22):1909–14.
2 Allwright S, Paul G, Greiner B, Mullally BJ, Pursell L, Kelly A et al. Legislation for smoke-

free workplaces and health of bar workers in Ireland: before and after study. BMJ 2005; 
331(7525):1117.
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Randomized controlled trials 
Introduction
A randomized controlled trial (RCT) is an intervention study in which 
subjects are randomly allocated to treatment options. Randomized con-
trolled trials (RCTs) are the accepted ‘gold standard’ of individual research 
studies. They provide sound evidence about treatment effi cacy which is 
only bettered when several RCTs are pooled in a meta-analysis. 

Choice of comparison group
The choice of the comparison group affects how we interpret evidence • 
from a trial
A comparison of an • active agent with an inert substance or placebo 
is likely to give a more favourable result than comparison with another 
active agent
Comparison of an active agent against placebo when an existing active • 
agent is available is generally regarded as unethical (see the extract 
from the Declaration of Helsinki, item 32 (M www.wma.net)
For example it would not be ethical to test a new anticholesterol drug • 
against a placebo; any comparison of new therapy would have to be 
against the currently proven therapy, statins.

‘The benefi ts, risks, burdens and effectiveness of a new intervention 
must be tested against those of the best current proven intervention, 
except in the following circumstances:

The use of placebo, or no treatment, is acceptable in studies where • 
no current proven intervention exists; or 
Where for compelling and scientifi cally sound methodological • 
reasons the use of placebo is necessary to determine the effi cacy or 
safety of an intervention and the patients who receive placebo or no 
treatment will not be subject to any risk of serious or irreversible 
harm’ 

(Declaration of Helsinki, item 32)

Comparison with ‘usual care’
When an intervention is a programme of care, for example an integrated 
care pathway for the management of stroke, it is common practice for the 
comparison group to receive the usual care.

www.wma.net
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Declaration of Helsinki (M www.wma.net)

The Declaration of Helsinki was fi rst developed in 1964 by the World 
Medical Association to provide guidance about ethical principles for 
research involving human subjects. It has had multiple revisions since, 
with the latest version published in 2008. Although not legally binding of 
itself, many of its principles are contained in laws governing research in 
individual countries, and the declaration is widely accepted as an author-
itative document on human research ethics.

The declaration addresses issues such as:
Duties of those conducting research involving humans• 
Importance of a • research protocol
Research involving • disadvantaged or vulnerable persons
Considering • risks and benefi ts
Importance of • informed consent
Maintaining • confi dentiality
Informing participants•  of the research fi ndings

The full 35-point declaration is available online at M www.wma.net. 

www.wma.net
www.wma.net
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Randomization in RCTs
Why randomize? 

Randomization ensures that the • subjects’ characteristics do not 
affect which treatment they receive. The allocation to treatment is 
unbiased
In this way, the treatment groups are • balanced by subject characteristics 
in the long run and differences between the groups in the trial outcome 
can be attributed as being caused by the treatments alone
This provides a • fair test of effi cacy for the treatments, which is not 
confounded by patient characteristics 
Randomization makes blindness possible (• b Blinding in RCTs, p. 14)

Randomizing between treatment groups
The usual way to do random allocation is by using a computer program 
based on random numbers. The random allocation process may work in 
two different ways:

The program is interactive•  and provides the allocation code for each 
patient as he/she is entered into the trial. This may be a code which 
refers to a treatment to maintain blindness or if the treatment cannot 
be blinded, for example with a technology, it will be the name of the 
actual intervention 
A computer-generated list•  of sequential random allocations is 
produced and administered by someone who is independent of the 
team that is recruiting patients to the trial. In this way, there is no bias 
in recruitment or allocation. In drug trials, the pharmacy may conduct 
the randomization and provide numbered containers to which it holds 
the code, so that the researcher and the patient can be kept blind 
to the actual allocation

Audit trail
It is important to have an audit trail of the recruitment and randomiza-
tion process including keeping a log of the recruited patients. This infor-
mation is needed for later reporting of the trial and assists with checking 
that the trial is being conducted according to the protocol.

Non-random allocation
0 Alternate allocation, or a method based on patient identifi ers such as 
hospital number or date of birth, are not random methods and are not 
recommended because they are open, and in the case of alternate alloca-
tion, predictable. These methods make blinding diffi cult and leave room for 
the researcher to change the allocation or recruit according to the treat-
ment that is to be received (e.g. give a sicker patient the new treatment). 

Stratifi cation for prognostic factors
If there are important prognostic factors that need to be accounted 
for in a particular trial, the random allocation can be stratifi ed so that the 
treatment groups are balanced for the prognostic factors. For example 
in trials of treatment for heart disease, the random allocation may be 
stratifi ed by gender so that there are similar numbers of men and women 
receiving each treatment.
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Minimization
Minimization is another method of allocating subjects to treatment groups 
while allowing for important prognostic factors.1,2 The allocation takes 
place in a way that best maintains balance in these factors. At all stages 
of recruitment, the next patient is allocated to that treatment which mini-
mizes the overall imbalance in prognostic factors. For a worked example 
see Altman and Bland1 or Pocock.2 Software to do minimization is avail-
able free from Martin Bland’s website: M www-users.york.ac.uk/~mb55/
guide/minim.htm

Blocking
Blocking is used to ensure that the number of subjects in each group is 
very similar at any time during the trial. The random allocation is deter-
mined in discrete groups or blocks so that within each block there are 
equal numbers of subjects allocated to each treatment. 

Example using blocks of size 4 and two treatments A, B

There are six possible blocks or arrangements of A and B, which give 
equal numbers of As and Bs:

AABB; ABAB; BBAA; BABA; ABBA; BAAB

We randomly choose blocks, so say the fi rst two chosen blocks are:

BBAA; AABB

Then the fi rst eight subjects will be allocated B, B, A, A, A, A, B, B

The total subjects on A and B as subjects 1 to 8 are recruited will be

(0,1), (0,2), (1,2) (2,2), (3,2), (4,2), (4,3), (4,4)

Hence, at all times, the total on A and the total on B will only differ by a 
maximum of 2 and so the treatment numbers will always be very similar 
and the numbers will be exactly balanced after every fourth subject is 
randomized.

Further extensions of ‘blocking’ are available with a mixture of different 
block sizes, whereby random combinations of blocks are selected. 

Further reading on randomization: see articles by Altman and Bland.3,4
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Patient consent in research studies
Introduction
It is generally accepted that all subjects participating in research give their 
prior informed consent. The Declaration of Helsinki (item 24, M www.
wma.net) states the following:

‘In medical research involving competent human subjects, each poten-
tial subject must be adequately informed of the aims, methods, sources 
of funding, any possible confl icts of interest, institutional affi liations of 
the researcher, the anticipated benefi ts and potential risks of the study 
and the discomfort it may entail, and any other relevant aspects of the 
study. The potential subject must be informed of the right to refuse to 
participate in the study or to withdraw consent to participate at any 
time without reprisal. Special attention should be given to the specifi c 
information needs of individual potential subjects as well as to the 
methods used to deliver the information. After ensuring that the poten-
tial subject has understood the information, the physician or another 
appropriately qualifi ed individual must then seek the potential subject’s 
freely-given informed consent, preferably in writing. If the consent 
cannot be expressed in writing, the non-written consent must be 
formally documented and witnessed.’ 

(Declaration of Helsinki, item 24)

Informed consent
This requires giving patients detailed description of the study aims, • 
what participation is required, and any risks they may be exposed to 
Consent must be voluntary • 
Consent is confi rmed in writing and a • cooling off period is provided 
to allow subjects to change their minds
Consent must be obtained for all patients recruited to an RCT• 
Giving or withholding consent must not affect patient treatment or • 
access to services
For questionnaire surveys, consent is often implicit if the subject • 
returns the questionnaire where it is clear in the accompanying 
information that participation is voluntary
Consent may not be required if the study involves anonymised analyses • 
of patient data only

When consent may be withheld 
In some situations, obtaining patient consent to a study may be problematic. 

Example 1
For example where the intervention is so desirable that patients would 
not want to risk being randomized to the control group. This is particu-
larly so when it is not possible to mask the intervention such as where the 
intervention is a programme of care and the control treatment is ‘usual 
care’. Subjects may not be willing to enter the trial and risk not getting 

www.wma.net
www.wma.net
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the new intervention, or they may enter the trial but drop out if they are 
allocated to the control group. 

One solution in situations like these is for the researcher to decide in 
advance to offer the intervention to all control group subjects after the 
trial has fi nished, assuming that the intervention proves to be effective. 
For example in exercise therapy trials, control group subjects may be 
offered the exercise regime at the end of the trial if it has been shown to 
work. Such an approach is stated in the Declaration of Helsinki (item 33; 
M www.wma.net) and would need to be costed into the trial. 

‘At the conclusion of the study, patients entered into the study are enti-
tled to be informed about the outcome of the study and to share any 
benefi ts that result from it, for example, access to interventions identi-
fi ed as benefi cial in the study or to other appropriate care or benefi ts.’

(Declaration of Helsinki, item 33)

Example 2
Patients may be reluctant to agree to enter a trial of a new therapy when 
there is an existing treatment which is known to work. In such situations, 
assuming that there is equipoise, it is the responsibility of the clinician to 
explain the study clearly enough to allow the patient to make an informed 
choice of whether or not to take part.

Further discussion of patient consent is beyond the scope of this 
book but the General Medical Council UK website has detailed guidance 
(M www.gmc-uk.org/guidance/current/library/research.asp).

www.wma.net
www.gmc-uk.org/guidance/current/library/research.asp
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Blinding in RCTs
Concealing the allocation

Blinding is when the treatment allocation is concealed from either the • 
subject or assessor or both
It is done to avoid conscious or unconscious bias in reported outcomes• 
A trial is • double blind if neither the subject nor the assessor knows 
which treatment is being given
A trial is • single blind if the treatment allocation is concealed from 
either the subject or the assessor but not both 
2 • Note that randomization makes blinding possible and is its most 
important role

Examples
A subject who knows that he is receiving a new treatment for pain which 
he expects to be benefi cial may perceive or actually feel less pain than he 
would do if he thought he was receiving the old treatment.

An assessor who knows that a subject is receiving the new steroid 
treatment for chronic obstructive pulmonary disease, which he expects 
to work better than the old one, may tend to round up measurements of 
lung function.

If the treatment allocation is concealed, then both the patient and 
assessor will make unbiased assessments of the effects of the treat-
ments being tested.

Placebo
An inert treatment that is indistinguishable from the active treatment• 
In drug trials it is often possible to use a placebo drug for the control • 
which looks and tastes exactly like the active drug
The use of a placebo makes it possible for both the subject and • 
assessor to be blinded

When blinding is not possible
In some situations blinding is not possible, such as in trials of technolo-
gies where concealment is impossible. For example in trials comparing 
different types of ventilator, it is impossible to blind the clinician, and simi-
larly in trials of surgery versus chemotherapy. 

Possible solutions are the use of sham treatments, such as sham 
surgery, but this may not be ethically acceptable. Trials of the effectiveness 
of acupuncture have used sham acupuncture for the control group to 
maintain blindness1 and trials involving injections sometimes use saline 
injections in the control group, although this may raise ethical objections. 

Sometimes ingenuity can be employed to address blindness, such as in 
a trial of electrical stimulation in non-healing fractures, where patients in 
the control group also received an electric current of non-therapeutic 
power but suffi cient to interfere with radio in the same way as the active 
coil did.2
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Double placebo (double dummy)
If a trial involves two active treatments that have different modes of treat-
ment, for example a tablet versus a cream, a double placebo (‘double 
dummy’), can be used whereby each patient receives two treatments. In 
the example given, patients would receive either the active tablet plus a 
placebo cream, or a placebo tablet plus an active cream. A double dummy 
can also be used if the timing of treatment is different for the two drugs 
being tested, for example if one drug is given once a day in the morning 
(drug A) and the other is given twice a day, morning and evening (drug B). 
In this case one group of patients would receive the active drug A in the 
morning and placebo drug B both morning and evening and the other 
would receive the placebo drug A in the morning and active drug B both 
morning and evening. 

Active placebo
Trials may use an active placebo, which mimics the treatment in some 
way to maintain blindness. For example some treatments give patients a 
dry mouth and so the presence or absence of this side effect may indicate 
to the patient which treatment they are on.

Example
In a trial of dextromethorphan and memantine to treat neuropathic pain, 
patients in the placebo group were given low dose lorazepam to mimic 
the side effects of dextromethorphan and memantine and thus help 
conceal the treatment allocation.3 

References
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RCTs: parallel groups and crossover 
designs
Two or more parallel groups

This is a trial with a head-to-head comparison of two or more • 
treatments
Subjects are allocated at random to a single treatment or a single • 
treatment programme for the duration of the trial
Usually, the aim is to allocate equal numbers to each trial, although • 
unequal allocation is possible
The • groups are independent of each other

Crossover trials
This involves a single group study•  where each patient receives two 
or more treatments in turn 
Each patient therefore acts as their own control and comparisons of • 
treatments are made within patients
The two or more treatments are given to each patient • in random 
order
Crossover trials are useful for • chronic conditions such as pain relief 
in long-term illness or the control of high blood pressure where the 
outcome can be assessed relatively quickly
They may not be feasible for treatments for short-term illnesses•  
or acute conditions that once treated are cured, for example 
antibiotics for infections
It is important to avoid the • carry-over effect of one treatment into the 
period in which the next treatment is allocated. This is usually achieved 
by having a gap or washout period between treatments to prevent 
there being any carry-over effects of the fi rst treatment when the next 
treatment starts
The simplest design is a two treatment comparison in which each • 
patient receives each of the two treatments in random order with a 
washout period of non-treatment in between
There are some particular • statistical issues that may arise in 
crossover trials which are related to the washout period and carry-
over effects, and how and whether to include patients who do not 
complete both periods. Senn gives a full discussion of the issues and 
possible solutions.1
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Example: crossover trial

A randomized, double-blind, placebo-controlled crossover study tested 
the effectiveness of valproic acid to relieve pain in patients with painful 
polyneuropathy. Thirty-one patients were randomized to receive either 
valproic acid (1500 mg daily) and then placebo, or placebo followed by 
valproic acid. Each treatment lasted for four weeks. No signifi cant dif-
ference in total pain or individual pain rating was found between treat-
ment periods on valproic acid and placebo (total pain (median = 5 in 
the valproic acid period vs 6 in the placebo period; P = 0.24).2 

Choice of design: parallel group or crossover?

Advantages of parallel group designs
The comparison of the treatments takes place concurrently• 
Can be used for any condition, especially an acute condition which is • 
cured or self-limiting such as an infection 
No problem of carry-over effects• 

Disadvantages of parallel group designs
The comparison is between patients and so usually needs a bigger • 
sample size than the equivalent cross-over trial

Advantages of crossover designs
Treatments are compared within patients and so differences • 
between patients are accounted for explicitly
Usually need fewer subjects than the equivalent parallel group trials• 
Can be used to test treatments for chronic conditions• 

Disadvantages of crossover designs
Cannot be used for many acute illnesses • 
Carry-over effects need to be controlled• 
Likely to take longer than the equivalent parallel designs• 
Statistical analysis is more complicated if subjects do not complete • 
all periods

References
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Zelen randomized consent design
Introduction
This design can be used when comparing a new treatment programme 
with usual care and attempts to address problems with patient consent 
(b Patient consent in research studies, p. 12). 

Allocation to treatments
Subjects are randomly allocated to treatment or usual care• 
Only those subjects who are allocated to treatment are invited to • 
participate and to give their consent
Subjects allocated to usual care (control) are not asked to give their • 
consent 
Among the treatment group, some subjects will refuse and so this • 
design results in three treatment groups1,2

1. Usual care (allocated) 
2. Intervention
3. Usual care (but allocated to intervention)

The analysis is performed with patients analysed in the original • 
randomized groups, i.e. 1 versus 2 + 3 (b Intention to treat analysis, 
p. 22)

Double randomized consent
Patients are randomized to intervention or control and then their • 
consent is sought, whichever group they are allocated to
Patients are allowed to choose either the treatment they are allocated • 
to or the other treatment
The analysis is performed with patients analysed in the original • 
randomized groups, whichever treatment they chose or received 
(b Intention to treat analysis, p. 22)

Justifi cation
The single randomized Zelen design has been criticized as being unethical 
since some subjects are not informed that they are in a trial. However, it 
is generally agreed that some trials could not take place without the use 
of this design because in some situations patients would not wish to take 
part if they were allocated to the control group. It could be argued that 
this therefore justifi es its use.3 
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Advantages of Zelen’s single randomized design
It avoids patient refusal at the outset due to the possibility of their • 
being allocated to control
It avoids later withdrawal in subjects who initially consent but then • 
withdraw when they are allocated to the control group
It allows a new and potentially desirable programme to be evaluated • 
rigorously in a randomized trial 

Disadvantages of Zelen’s single randomized design
Patients in the control group do not know they are in a trial, which • 
has ethical implications
The design leads to three groups and will lead to bias if subjects are • 
not analysed in the group to which they were allocated irrespective 
off the treatment they chose or received
Will only work if the data required are routinely collected, otherwise • 
no data will be available for the control group 
It is less effi cient statistically than a straightforward two-group design • 
since, when subjects choose not to accept the allocated treatment, 
the true treatment effect is diluted

Advantages of Zelen’s double randomized design
It randomizes patients but allows them to choose which treatment • 
they prefer
It avoids the ethical problems of not seeking consent for patients • 
allocated to control
It thus allows a new and potentially desirable programme to be • 
evaluated rigorously in a randomized trial 

Disadvantages of Zelen’s double randomized design
It almost inevitably leads to severe contamination of the groups since • 
some patients will choose the opposite treatment to which they have 
been allocated
It is less effi cient statistically than a straightforward two-group design • 
since, when subjects choose not to accept the allocated treatment, 
the true treatment effect is diluted

References
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Superiority and equivalence trials
Superiority trials

Seek to establish that one treatment is • better than another
When the trial is designed the sample size is set so that there is high • 
statistical power to detect a clinically meaningful difference between 
the two treatments
For such a trial a statistically signifi cant result is interpreted as showing • 
that one treatment is more effective than the other

Equivalence trials
Seek to test if a new treatment is • similar in effectiveness to an existing 
treatment
Appropriate if the new treatment has certain benefi ts such as fewer • 
side effects, being easier to use, or being cheaper
Trial is designed to be able to demonstrate that, within given • 
acceptable limits, the two treatments are equally effective
Equivalence•  is a pre-set maximum difference between treatments 
such that, if the observed difference is less than this, the two 
treatments are regarded as equivalent 
The • limits of equivalence need to be set to be appropriate clinically
The tighter the limits of equivalence are set, the larger the sample size • 
that will be required
If the condition under investigation is serious then tighter limits for • 
equivalence are likely to be needed than if the condition is less serious 
The calculated sample size tends to be bigger for equivalence trials • 
than superiority trials

Non-inferiority trials
Special case of the equivalence trial where the researchers only want • 
to establish if a new treatment is no worse than an existing treatment 
In this situation the analysis is by nature one-sided (• b Tests of 
statistical signifi cance, p. 246)

Practicalities
In general the design and implementation of equivalence trials is less • 
straightforward than superiority trials
If patients are lost to follow-up or fail to comply with the trial protocol, • 
then any differences between the treatments is likely to be reduced 
and so equivalence may be incorrectly inferred
It is especially important that equivalence trials need very strict • 
management and good patient follow-up to minimize these problems
It is often helpful to include a secondary analysis where subjects • 
are analysed according to the treatment they actually received, ‘per 
protocol’ analysis 
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Examples

Is atorvastatin more effective at reducing blood cholesterol levels • 
than simvastatin?

   This is an example of a superiority trial
Are angiotensin receptor blockers (e.g. valsartan) as effective at • 
reducing blood pressure in hypertensive patients as angiotensin 
converting enzyme (ACE) inhibitors (e.g. ramipril)?

   This is an example of an equivalence trial

Superiority and equivalence 
It is important to distinguish between superiority and equivalence • 
when designing a trial
Choice depends on the purpose of the trial• 
A trial designed for one purpose may not be able to adequately fulfi l • 
the other
In general, equivalence trials tend to need larger samples• 
A trial designed to test superiority is unlikely to be able to draw • 
the fi rm conclusion that two treatments which are not signifi cantly 
different can be regarded as equivalent

For further details of equivalence trials, see the books on clinical trials 
by Matthews1 and Girling and colleagues.2
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Intention to treat analysis
Introduction
The statistical analysis of RCTs is straightforward where there are com-
plete data. The primary analysis is a direct comparison of the treatment 
groups, and this is performed with subjects being included in the group 
to which they were originally allocated. This is known as analysing 
according to the intention to treat (ITT) and is the only way in which 
there can be certainty about the balance of the treatment groups with 
respect to characteristics of the subjects. ITT analysis therefore provides 
an unbiased comparison of the treatments. 

Change of treatment
If patients change treatment they should still be analysed together with 
patients in their original, randomly allocated group, since change of treat-
ment may be related to the treatment itself. If a patient’s data are analysed 
as if they were in their new treatment group, the balance in patient char-
acteristics which was present after random allocation will be lost. A per 
protocol analysis, where patients are analysed according to the treatment 
they have actually received, may be useful in addition to the ITT analysis if 
some patients have stopped or changed treatment. 

Missing data
Missing data are unfortunately common in all research studies, particularly 
where there is follow-up. Where there are missing data it may not be pos-
sible to include a particular individual in the analysis, and clearly if there 
are a lot of missing data, the validity of the results is called into question. 

Where possible, all subjects should be included in the analysis. In a trial 
with follow-up it may be possible to include subjects with no fi nal data 
if they have some interim data available, either by using the interim data 
directly or by statistical modelling. These issues should be considered at 
the design stage to minimize later loss of data through careful design of 
outcome data and strategies to minimize loss to follow-up. 

All subjects recruited should be accounted for at all stages so that 
a detailed account can be given of how the trial was conducted and 
what happened to all subjects. This is particularly important for the 
interpretation of the fi ndings and so is included when the study is written 
up. 

A fuller discussion of missing data is given elsewhere (b Missing data, 
p. 402).
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Intention to treat (ITT) and missing data
Analyse subjects in the groups they were originally allocated to even • 
if they don’t comply or change treatment
This provides an unbiased comparison of the treatments• 
Per protocol analysis may be useful but only in addition to ITT and • 
not as the primary analysis
Keep an record of all subjects to be able to account for their • 
treatment and for any subjects who withdraw

Further reading
Fuller details of how to design and conduct RCTs are given in the books 
by Pocock,1 Senn,2 and Matthews.3

References
1 Pocock SJ. Clinical trials: a practical approach. Chichester: Wiley , 1983.
2 Senn S. Cross-over trials in clinical research. Chichester: Wiley, 2002.
3 Matthews JNS. Introduction to randomized controlled clinical trials. 2nd ed. Boca Raton, FL: 

Chapman & Hall/CRC, 2006.



24 CHAPTER 1 Research design

Case–control studies
Observational studies
In observational studies the subjects receive no additional intervention 
beyond what would normally constitute usual care. Subjects are therefore 
observed in their natural state. 

Case–control study
This study investigates causes of disease, or factors associated with a • 
condition
It starts with the disease (or condition) of interest and selects patients • 
with that disease for inclusion, the ‘cases’
A comparison group without the disease is then selected, • ‘controls’, 
and cases and controls are compared to identify possible causal factors
Case–control studies are • usually retrospective in that the data 
relating to risk factors are collected after the disease has been 
identifi ed. This has consequences, which are discussed later in this 
section.

When to use a case–control design
To investigate risk factors for a rare disease where a prospective study • 
would take too long to identify suffi cient cases, e.g. for Creutzfeldt–
Jakob disease
To investigate an acute outbreak in order to identify causal factors • 
quickly – for example where an answer is needed about the causes of 
an outbreak food poisoning, or an outbreak of legionnaire’s disease

Choice of controls
As with intervention studies, the choice of controls affects the comparison 
that is made. Common choices include:

Patients in the same hospital but with unrelated diseases or conditions• 
Patients one-to-one matched to controls for key prognostic factors • 
such as age and sex
A random sample of the population from which the cases come• 

Clearly the best control group is the third option, but this is rarely pos-
sible. For this reason some case–control studies include more than one 
control group for robustness. 

Matched controls
Matching is popular but needs to be carefully specifi ed, for example ‘age 
matched within two years’ gives the range within which matching can be 
made. It is not usually possible to match for many factors, as a suitable 
match may not exist. In a matched design, the statistical analysis should 
take account of the matching and factors used for matching cannot be 
investigated due to the design. Where one subject in a matched pair has 
missing data, then both subjects are omitted from the statistical analysis.

Sample size for controls
It is common to choose the sample size so that there is the same number 
of cases as controls. For a given total sample size this gives the greatest 
statistical power, i.e. the greatest possibility of detecting a true effect. 
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If the number of available cases is limited, then it is possible to increase 
the power by choosing more controls than cases However, the gain in 
power diminishes quickly so that it is rarely worth choosing more than 3 
controls per case.1

Collecting data on risk factors 
Since case–control studies start with cases that already have the disease, 
data about their exposure to possible risk factors prior to diagnosis is 
collected retrospectively. This is an advantage and a disadvantage. The 
advantage is that the exposure has already happened and so the data 
simply need to be collected; no follow-up period is needed. The disadvan-
tage relates to the quality of the data. Data taken from clinical notes may 
contain errors that cannot be rectifi ed or gaps that cannot be fi lled. Data 
obtained directly from subjects about their past is susceptible to recall 
bias because cases may have different recall of past events, usually better, 
than the controls. For example a case with a gastrointestinal condition 
may be more conscious of what they have eaten in the past than a healthy 
control who may have simply forgotten. 

Reference
1 Taylor JM. Choosing the number of controls in a matched case–control study, some sample 

size, power and effi ciency considerations. Stat Med 1986; 5(1):29–36.
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Case–control studies (continued)
Limitations of design

The choice of control group affects the comparisons between cases • 
and controls 
Exposure to risk factor data is usually collected retrospectively and • 
may be incomplete, inaccurate, or biased
If the process that leads to the identifi cation of cases is related • 
to a possible risk factor, interpretation of results will be diffi cult 
(ascertainment bias) 

For example suppose the cases are young women with high blood pres-
sure recruited from a contraception clinic. In this situation a possible risk 
factor, the oral contraceptive (OC) pill, is linked to the recruitment of 
cases and so OC use may be more common among cases than population 
controls for this reason alone. 

Time-course relationships need careful interpretation since changes • 
in biological quantities may precede the disease or be a result of the 
disease itself. For example a raised serum troponin level is associated 
with myocardial infarction, but is only raised after the event. Therefore 
a case–control study may fi nd that high troponin levels are associated 
with myocardial infarction but this cannot in fact be a risk factor 
Risk estimates for exposures cannot be estimated directly because • 
the case and control groups are not representative samples of their 
respective target populations and so estimates of risks are biased. This 
has implications for the statistical analysis and the interpretation of 
results. Risks are usually estimated using odds and ratios of odds, and 
these only approximate to risks and ratios of risks when the disease 
under investigation is rare 
This limitation can be overcome with certain designs, for example where a • 
case–control study is nested in a cohort study where all cases and controls 
are identifi ed prospectively and a truly random sample of controls is 
available (b Cohort studies, p. 28). In this situation, the relative risk can be 
calculated directly
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Example of case–control study

A recent study investigated the association between genitourinary infec-
tions in the month before conception to the end of the fi rst trimester, 
and gastroschisis.1 Subjects were 505 babies with gastroschisis (the 
‘cases’), and 4924 healthy liveborn infants as controls.

The study reported data (Table 1.1) showing a positive relationship 
between exposure to genitourinary infections and gastroschisis (odds 
ratio = 2.02; 95% CI: 1.54 to 2.63).

Table 1.1 Genitourinary infections in the month before conception 
to the end of the fi rst trimester, and gastroschisis

Exposed to infection? Cases Controls

Yes 81/505 (16%) 425/4924 (9%)

No 424/505 (84%) 4499/4924 (91%)

Reference
1 Feldkamp ML, Reefhuis J, Kucik J, Krikov S, Wilson A, Moore CA et al. Case–control study of 

self reported genitourinary infections and risk of gastroschisis: fi ndings from the national birth 
defects prevention study, 1997–2003. BMJ 2008; 336(7658):1420–3.



28 CHAPTER 1 Research design

Cohort studies
Introduction
A cohort study is an observational study that aims to investigate causes of 
disease or factors related to a condition but, unlike a case–control study, 
it is longitudinal and starts with an unselected group of individuals who are 
followed up for a set period of time. Cohort studies are sometimes used 
to confi rm the fi ndings of case–control studies, such as happened when 
Doll and Hill observed a relationship between smoking and lung cancer in 
a case–control study1 and subsequently established the longitudinal study 
of doctors in the UK.2

Design of a cohort study
This starts with an unselected group of ‘healthy’ individuals• 
The subjects are • followed up to monitor the disease or condition of 
interest and potential risk factors
The length of follow-up is chosen to allow suffi cient subjects to get the • 
disease and risk factors to be explored
In the simplest case, where there is a single risk factor that is either • 
present or absent, the incidence of disease can be related directly to 
the presence of the risk factor
Usually • prospective, with the risk factor data being recorded before 
the disease is confi rmed
Can be • retrospective but requires that full risk factor data are 
obtained on all individuals with and without the disease of interest 
using data that were recorded prospectively

When to use a cohort study design
When • precise estimates of risk associated with particular factors are 
required, for example when a case–control study has established that 
an association exists but is unable to provide estimates of the risk
When information on past risk factors in individuals with disease is • 
unavailable or too unreliable to use
When the • time-course of a risk factor is of interest, for example 
with smoking, where cohort studies have been able to demonstrate 
the cumulative adverse effects of long-tem smoking and the potential 
benefi ts of quitting after smoking for different lengths of time2

When resources and time are suffi cient to support a lengthy study• 

Diffi culties with cohort studies
A large number subjects is needed to obtain enough individuals who • 
get the disease or condition, particularly if it is uncommon
The length of follow up may be substantial to get enough diseased • 
individuals and so the cohort study is not feasible for rare diseases
There is diffi culty in maintaining contact with subjects, particularly if the • 
follow-up is lengthy 
The resources required may be very high• 
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Example of a cohort study

A cohort study examined the relationship between body mass index 
(BMI) and all-cause mortality in 527 265 US men and women in the 
National Institutes of Health–AARP cohort who were 50–71 years old 
at enrolment in 1995–1996.3 BMI was calculated from self-reported 
weight and height. 

The study found that among those who had never smoked, excess 
body weight during midlife was associated with a higher risk of death. 
Table 1.2 gives results for men who had never smoked. 

Table 1.2 Relative risk of death in men aged 50–71 at enrolment by 
BMI

BMI at age 50 Relative risk 

<18.5 1.29

18.5–20.9 1.14

21.0–23.4 1.04

23.5–24.9 1.00 

25.0–26.4 1.05

26.5–27.9 1.31

28.0–29.9 1.49

30.0–34.9 1.96

35.0–39.9 2.46

≥40.0 3.82

All relative risks were adjusted for confounding factors (see paper for details3). The reference 
category for BMI is shown in bold.

References
1 Doll R, HILL AB. Smoking and carcinoma of the lung; preliminary report. Br Med J 1950; 

2(4682):739–48.
2 Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years’ observations 

on male British doctors. BMJ 2004; 328(7455):1519.
3 Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R et al. Overweight, 

obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 
2006; 355(8):763–78.
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Cohort studies (continued)
Mixed designs
Larger programmes of study may involve a mixture of designs such as 
cohort and case–control, a cross-sectional study being extended to 
become a cohort study and so on. Trial populations may be followed up 
after the trial part has ended, simply as a cohort of like individuals. 

Cohort study with a nested case–control study 
In a cohort study it may be worthwhile to identify all individuals with a 
disease and then retrospectively select a sample of the non-diseased indi-
viduals for comparison. This design may be desirable if:

The resource implications of collecting data on all non-diseased • 
individuals is too high
All information was available but unprocessed• 
Biological samples were collected but not analysed• 

This study is known as a nested case–control study and provides an 
effi cient way of investigating particular factors once the outcomes from 
the cohort have been established.

Bias in risk factor data
In a nested case–control study such as this, the risk factor data should • 
not be as biased as it may be in a conventional case–control study, 
since it was collected prospectively
There is a potential problem if there is differential loss to follow-up • 
as this would reduce the availability of true controls and bias the 
comparisons
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Example: UK National Child Development Study (NCDS) 

Description of the study
All babies born 3–9 March 1958 in Great Britain were studied to • 
investigate and document perinatal mortality
The subjects were followed into childhood and further assessments • 
were made at ages 7, 11, 16, 23, 33, 41–42, 44–46, and 49–50
The study aims broadened over the years to monitor physical, • 
educational, social, and economic development in the subjects
The recent sweeps have obtained measures of ill health and • 
biomedical risk factors to address a range of hypotheses
Data available from UK data archive (• M www.esds.ac.uk)
While follow-up has been careful, the reduction in numbers at each • 
sweep can be seen in Table 1.3

Table 1.3 Numbers of subjects at different follow-ups in the NCDS 
(longitudinal achieved sample)

1958 17,416

1965 15,051

1969 14,757

1974 13,917

1981 12,044

1991 10,986

2000 10,979

2005 9,175

www.esds.ac.uk
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Cross-sectional studies
Introduction
In a cross-sectional study a sample is chosen and data on each individual 
is collected at one point in time. Note that this may not be exactly the 
same time point for each subject. For example, a survey of primary care 
consultations may be conducted over a week – each patient will fi ll in the 
survey once but different subjects will fi ll out their survey on different 
days depending on when they came to the surgery.

When to use a cross-sectional study
Surveys of prevalence, such as a survey to ascertain the prevalence of • 
asthma
Surveys of attitudes or views, such as: studies of patient satisfaction, • 
patient/professional knowledge; studies of behaviour, such as alcohol 
use and sexual behaviour
When inter-relationships between variables are of interest, for • 
example a study to determine the characteristics of heavy drinkers, a 
cross-sectional study allows comparisons by sex, age, and so on

Cautions in interpreting cross-sectional study data
Temporal effects
Since the data on each individual are collected at one time point, care is 
needed in inferring temporal effects unless the exposure is constant, such 
as with a congenital or genetic factor (e.g. blood groups). For example, if a 
relationship is observed between a disease and blood group then we can 
safely assume that this is a true association since the blood group of the 
subjects would not be changed by the disease process. The same could 
not be assumed if a cross-sectional study showed an association between 
a disease and blood pressure since the disease might have led to the rise 
in blood pressure rather than the other way around.

Repeated cross-sectional studies
Sometimes cross-sectional studies are repeated at different times and/or 
in different places to look at the variability in fi ndings. For example, many 
cross-sectional studies have estimated the prevalence of asthma in school-
children. Comparisons of prevalence in different places is straightforward 
but comparisons of the prevalence at different times is less so because 
each cross-sectional survey is likely to have included a slightly different 
sample of children at the different time points, and so interpretation of 
changes must be made cautiously.

Cross-sectional studies that appear to be longitudinal
Cross-sectional studies can be misinterpreted as if they were longitudinal 
studies. For example, a cross-sectional study in a sample of fetuses where 
the gestational age of the fetuses spans a range, say 22–28 weeks. Some 
researchers have used data such as these to estimate growth trends. 
This is dubious because each fetus is measured just once and so the trend 
is being estimated from different fetuses. Thus differences between fetuses 
are likely to contribute to some of the differences observed by gestational 
age.
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Example: cross-sectional study

A study investigated differences in cardiovascular risk in British South 
Asian and in white children in 10 towns.1 The study included 73 South 
Asian and 1287 white children and measured fasting glucose levels as 
a measure of insulin resistance, plus a number of other markers of 
cardiovascular risk. Each child was assessed just once, thus this is a 
cross-sectional study.

Reference
1 Whincup PH, Gilg JA, Papacosta O, Seymour C, Miller GJ, Alberti KG et al. Early evidence of 

ethnic differences in cardiovascular risk: cross sectional comparison of British South Asian and 
white children. BMJ 2002; 324(7338):635.
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Case study and series
Differences in aims
A case study or case report is like a case series but it includes only one 
individual: 

The aim is to describe a single and unusual incident or case• 

A case series is a descriptive study involving a group of patients who all 
have the same disease or condition: 

The aim is to describe common and differing characteristics of a • 
particular group of individuals 

Similarities
For both a case study and a case series:

The aim is not to draw general conclusions • 
It is not a true research study• 
It may provide useful indications for further research • 

Example: a case study

An article published in The Lancet described the case of an 80-year old 
woman who presented with episodes of unconsciousness and disorien-
tation over several years.1 During a subsequent episode she was found 
to have a blood glucose of 1.5 mmol/L (normal range 3.5–5.5 fasting). 
Routine blood tests were normal and a 72-hour fast produced no 
symptoms of hypoglycaemia (low blood sugar).

Further investigations led to the discovery of an insulin-secreting 
tumour in the body of the pancreas. The tumour was producing excess 
insulin in response to glucose, therefore causing glucose-induced 
hypoglycaemia.

Example: a case series

An article published in Brain described a series of patients with pneumo-
coccal meningitis.2 The paper reported the symptoms, complications, 
and outcome in 87 consecutive meningitis patients seen in a particular 
neurology department. The authors stated that their analysis can help 
doctors identify prognostic factors in patients, and can guide the design 
of future research studies.

References
1 Wiesli P, Spinas GA, Pfammatter T, Krahenbuhl L, Schmid C. Glucose-induced hypoglycaemia. 

Lancet 2002; 360(9344):1476.
2 Kastenbauer S, Pfi ster HW. Pneumococcal meningitis in adults: spectrum of complications and 

prognostic factors in a series of 87 cases. Brain 2003; 126(Pt 5):1015–25.
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Deducing causal effects
Association and causation
Observational studies frequently reveal associations. It is important in 
interpreting such associations to consider if they are likely to represent 
actual causes.

Causal effects can only be fi rmly concluded from RCTs. In other words • 
it is only when a study has randomized subjects to treatments that 
researchers are able to deduce that differences observed between 
treatment groups are due to the treatment alone
Observational studies often reveal relationships between a disease and • 
a risk factor. However, we cannot be sure that the risk factor caused 
the disease. It may be that another factor that was related to both the 
disease and the risk factor was in fact the causal factor, and that the 
relationship observed was due to confounding
Cigarette smoking is a common confounder since the characteristics • 
of smokers and non-smokers differ in many ways, some of which may 
be related to disease simply because of their association with smoking. 
In such cases when smoking is controlled for in the analysis, the 
associations diminish or disappear

Example

A study of factors affecting birthweight observed that on average preg-
nant women with low blood folate levels had smaller babies. The data 
were analysed further and showed no evidence for this relationship in 
women who were non-smokers although the relationship was seen in 
the women who smoked. It was further discovered that women who 
smoked had lower mean folate levels than women who did not smoke.

Further multifactorial analysis was conducted and the effect of folate 
on birthweight became non-signifi cant after controlling for smoking 
whereas the effect of smoking remained signifi cant after adjusting for 
folate level.

It was concluded that the ‘folate effect’ that was observed was simply 
due to smoking. In other words women with low folate levels had 
smaller babies because of their smoking and not because of the folate 
levels. The folate effect was a confounder and not a directly causal 
effect.
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The Bradford-Hill criteria for causation
The British medical statistician, Austin Bradford-Hill, published a set 
of criteria for causation.1 The criteria are conditions which, if fulfi lled, 
allow causation to be more confi dently inferred from an observational 
study. They are:

Strength of association• 
Consistency in different studies, settings, etc.• 
Specifi city of association of risk factor with a particular disease• 
Temporal relationship – exposure precedes disease• 
Dose–response relationship• 
Biological plausibility for causality• 
Coherence – association is consistent with current knowledge• 
Experimental evidence for causality• 
Existence of analogous evidence between a similar exposure and • 
disease

Reference
1 Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965; 58:

295–300.
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Designing an audit
What is audit?

‘Clinical audit is a quality improvement process that seeks to improve 
the patient care and outcomes through systematic review of care against 
explicit criteria and the implementation of change. Aspects of the struc-
tures, processes and outcomes of care are selected and systematically 
evaluated against explicit criteria. Where indicated, changes are imple-
mented at an individual team, or service level and further monitoring is 
used to confi rm improvement in healthcare delivery.’1

Audit cycle
The aim of audit is to monitor clinical practice against agreed best prac-
tice standards and to remedy problems. Where problems in practice are 
identifi ed, attempts are made to resolve these and then clinical practice is 
re-audited against the agreed standards. This is the audit cycle (Fig. 1.1).

Identify standards

and collect data on

current practice

Compare data

to standards

Plan and

make

necessary

changes

Re-audit

Fig. 1.1 The audit cycle.

Choosing the topic
Audits are designed to monitor and improve clinical practice and so the 
choice of topic is guided by indications of areas where improvement 
is needed in addition to local and national requirements. The following 
criteria help guide the choice of topics in general.

Possible topics
Areas where a problem has been identifi ed, e.g. an infection outbreak• 
High volume practice, e.g. prescribing antibiotics in general practice• 
High risk practice, e.g. major surgery• 
High cost, e.g. • in vitro fertilization
Areas of clinical practice where guidelines or fi rm evidence exists, • 
e.g. National Institute for Health and Clinical Excellence (NICE) guidelines 
or government targets
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Aims of audit 
This defi nes the overall purpose and can be a question or statement• 
The focus is on improvement in clinical practice• 
The organization carrying out the audit should have the ability to make • 
changes based on the fi ndings. For example, there would be no point 
for a hospital to audit the number of referrals received from general 
practitioners (GPs) unless it could infl uence the practice of the GPs 
who were referring

Determining the standard
This is the best currently available clinical practice based on best • 
evidence
It must be measurable• 

Data collection: retrospective
Can be used to investigate acute events• 
Useful when resources – time, cost, human resources, are limited • 
Tends to use routine data, thus may provide limited information• 

Data collection: prospective
Provides current data • 
Allows a choice of data to be collected • 
Requires forward planning• 
Has resource implications – time, cost, human resources• 

Census or sample?
A census is needed if outcome is critical, e.g. death rates after surgery• 
A sample is okay if a snapshot will suffi ce • 
Sample may be dependent on a fi xed number or a length of time• 
Sample size needs to be big enough to provide robust information for • 
key aims of audit and use standard sample size calculations to ensure 
this (b Choosing a sample size, p. 56) 
Sampling strategy needs to be representative of the target population • 
(b Sampling strategies, p. 54)
Beware of seasonal effects when choosing a sample• 
Use random samples if possible, or representative consecutive samples• 

Further help
Most hospitals have clinical audit departments, which can provide support 
for clinicians designing and conducting clinical audits.

Reference
1 Copeland G. A practical handbook for clinical audit. 2008. Available from: M www.hqip.org.uk/

clinical-audit-handbook/ (accessed 30 Dec 2009).

www.hqip.org.uk/clinical-audit-handbook/
www.hqip.org.uk/clinical-audit-handbook/
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Data collection in audit
Data forms

Consider how the data will be analysed when designing the form• 
Design the form in advance – standard forms or example forms may • 
be available
If audit is new to you, discuss draft form with an experienced colleague • 
Pilot the data collection on a few cases to check for feasibility and • 
usability of the form, etc.

Outcomes measured 
These may take one of several forms:

A direct outcome, e.g. death, infection, re-admission• 
A process, e.g. whether or not cholesterol was measured in patients • 
admitted with cardiovascular disease 
A surrogate outcome, e.g. spirometry as a measure of lung function• 

Data analysis
In general, the same methods of statistical analysis are used for audit as 
for research, although complicated statistical methods may not be needed. 
In particular:

Simple descriptive analyses may be suffi cient to answer audit questions• 
Summary statistics should always be calculated fi rst such as • 
percentages for frequencies and mean, standard deviation, median 
range for continuous data 
Graphical display may be helpful• 
Where the size of an estimate is critical, it should be accompanied by • 
a 95% confi dence interval to show how precise it is (b Chapter 8, 
p. 237)
Comparisons of proportions or means can be done using standard • 
signifi cance tests as described later in this book (b Tests of statistical 
signifi cance, p. 246)

Examples of audit topics

Are all hospital patients seen by a doctor every day?• 
How many inpatients have acquired meticillin resistant • Staphylococcus 
aureus (MRSA) in hospital?
Is there adherence to antibiotic protocols?• 
What proportion of patients in an emergency department stay longer • 
than four hours?
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Research versus audit
Introduction
The main difference between audit and research is in the aim of the study. 
A clinical research study aims to determine what practice is best, whereas 
an audit checks to see that best practice is being followed. In this way 
audit and research may follow each other in a cycle whereby research 
leads to new best practice which needs to be audited and audits lead to 
new questions which require investigating in research studies.

Research and knowledge
Research uses rigorous scientifi c methods to generate new knowledge 
which can be generalized to other patient groups, to other settings 
and so on. In medicine, research fi ndings are used to determine best 
practice.

Audit and quality
Audit aims to improve patient care by reviewing clinical practice in a 
given setting against best practice standards and instigating change in 
practice as needed, to maintain or raise quality.

Common features of research and audit
Both address a particular question related to best clinical practice• 
Both consider and collect the appropriate data required to fulfi ll the • 
aims of the study
Both usually involve samples and a determination of the appropriate • 
type and size of sample
Both require data checking and data analysis• 
Both require scientifi c rigour appropriate to the aims of the study• 

Grey areas
It is diffi cult to classify some studies as either wholly audit or wholly 
research. It is best to get local advice in such situations. Examples include:

Patient surveys that seek views and attitudes about clinical practice• 
Evaluations of a modifi ed or new service to see if it works• 
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Data collection: sources of data
New data
This is when data collection is designed specifi cally for the study and the 
data are newly collected.

Advantages
Researcher has control over what data are collected, i.e. fi t-for-purpose• 
Current• 

Disadvantages
Cost• 
Time to collect and process• 
Possibility of unknown quantity of missing data due to refused • 
participation, subjects lost, etc.

Routine data
This refers to data collected for another purpose, often unrelated to 
research, e.g. monitoring.

Advantages
Relatively quick to obtain, particularly if computerized• 
May be already processed and/or computerized• 
Usually much lower cost than primary data collection• 

Disadvantages
No control over data available• 
Limited control over missing data and ability to fi ll gaps and resolve • 
queries
Data may not be in required format• 

Patient notes
These is may be in hand-written or computerized format.

Advantages
Relatively quick to obtain• 
Usually much lower cost than primary data collection• 

Disadvantages
No control over data available• 
Limited control over missing records data, missing records, ability to fi ll • 
gaps, resolve queries
Hand-written notes may be unformatted, diffi cult to search and hard • 
to read

Secondary data
These are data collected and recorded for another research study, and 
which are available for use.

Advantages
Relatively quick to obtain• 
Usually already processed so that minimal checking and data cleaning • 
is required
Usually much lower cost than primary data collection• 
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Disadvantages
No control over data available• 
Limited control over missing data and ability to fi ll gaps and resolve • 
queries
Data may not be in required or desirable format• 
May be out of date• 

Example

A study investigated the association between deprivation and use of the 
emergency ambulance service across England. Deprivation scores for 
each district in the country were obtained from the Offi ce for National 
Statistics. The number of ‘999’ calls to each ambulance service over the 
course of a given year were obtained from the Department of Health. 
Information on which districts were covered by each ambulance service 
in England were obtained from individual ambulance services. These 
data were used to investigate the relationship between deprivation and 
ambulance service usage. No new data was collected for the study.1

Reference
1 Peacock PJ, Peacock JL. Emergency call work-load, deprivation and population density: an inves-

tigation into ambulance services across England. J Public Health (Oxf) 2006; 28(2):111–15.
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Data collection: outcomes
General principles

In an intervention study the main or primary outcome is critical as it is • 
used to determine the effi cacy of the treatment under investigation
In most circumstances only one primary outcome is chosen and other • 
important outcomes are regarded as secondary
Sample size calculations use the primary outcome to ensure the study • 
is big enough to detect a clinically important difference
Choice of a single outcome is not always straightforward because • 
a similar outcome may be measurable in more than one way, for 
example using capillary blood glucose readings compared with HbA1c

Composite outcomes
In some situations there are multiple ways of assessing a trial outcome, for 
example in trials in cardiology where possible outcomes include: subse-
quent cardiac event, hospitalization, death. In such cases researchers may 
choose a primary outcome which is a composite of two or more out-
comes, such that the composite outcome is positive if one or more of the 
component outcomes have happened. Many composite outcomes include 
‘death’ as one of the possible events.

Advantages
Composite outcomes have several advantages:

They allow several outcomes to be combined in settings where • 
different outcomes are of similar importance but refl ect different 
clinical events, for example in a trial of treatment for gestational 
diabetes, the primary outcome was a composite measure of serious 
perinatal complications, defi ned as one or more of: fetal death, 
shoulder dystocia, bone fracture, and nerve palsy1

Main advantage of using a composite outcome is the gain in statistical • 
power – where individual events are uncommon, a large sample will be 
required to demonstrate conclusive differences. Using a composite will 
increase the event rate and allows trials to recruit a lower sample size. 

Disadvantages
There are some diffi culties with the choice and use of composite out-
comes:

It may be hard to determine the minimum clinical difference for the • 
composite, this requires an estimate of the incidence of the composite 
itself and not just the incidence of the individual components as well as 
clinical judgement about what constitutes an important change in rate
The interpretation of results may be diffi cult – it is important that • 
the separate component effect sizes are each reported as well as the 
combined effect size, to allow clinical interpretation
If the effect sizes (e.g. relative risks) vary among the components then • 
overall interpretation of the fi ndings is diffi cult, for example if a new 
treatment reduces subsequent adverse events but increases death 
rates2–5
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Surrogate outcomes
In studies where the outcome of interest is very rare or requires a long 
follow-up period to determine it, a surrogate outcome is often used to 
increase statistical power and effi ciency. Surrogate outcomes should be 
chosen and used with care:

A surrogate outcome should be closely related to the clinical outcome • 
of interest such as a biomarker or process variable
Examples include CD4 count for acquired immune defi ciency • 
syndrome (AIDS) morbidity and mortality, cholesterol level for 
cardiovascular disease, length of stay for hospital-based treatments
Where surrogate outcomes are only weakly associated with the clinical • 
outcome of interest, the benefi t in using them is offset by the diffi culty 
in interpreting the results

References
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Outcomes: continuous and categorical
Introduction
In clinical medicine and in medical research it is fairly common to catego-
rize a biological measure into two groups, either to aid diagnosis or to 
classify an outcome. For example blood cholesterol level is measured as 
mmol per litre (mm/L) but may be classifi ed into two groups defi ned as 
less than or equal to 5.8 mm/L (‘normal’) or greater than 5.8 (‘high’). It is 
often useful to categorize a measurement in this way to guide decision-
making, and/or to summarize the data but doing this leads to a loss of 
information which in turn has statistical consequences. 

Example: what happens when we categorize data
Suppose in a study of infants their birthweights are recorded. Suppose 
then that the birthweight data, which are continuous, are categorized as 
‘low birthweight’ (<2500g) or ‘normal birthweight’ (≥2500g). This means 
that each birthweight value is effectively replaced by a 0 or 1 (Table 1.4) 
and much data are discarded. 

 

Table 1.4 Part of a dataset showing birthweight in grams and birthweight 
dichotomized as low birthweight yes/no

Subject no. Birthweight (g) Low birthweight

(<2500: no=0, yes=1)

1 2720 0

2 4040 0

3 3590 0

4 1820 1

5 3860 0

Effects of categorization on statistical signifi cance
Categorizing continuous data into two groups discards much data• 
For statistical tests, P value will be larger than if we had analysed the • 
data as a continuous variable
Thus statistical tests are less likely to fi nd a signifi cant difference • 
(Table 1.5)
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Example: effects of categorization on statistical signifi cance 

Table 1.5 Mean birthweight (BW) and the percentage of low birth-
weight (LBW) babies (BW <2500 g) in the same study by the mothers’ 
smoking status during pregnancy

Outcome Non-smoker Smoker P value

n = 156 n = 114

BW mean (SD) (g) 3360 (535) 3192 (483) 0.008

LBW % (n) 4.5% (7) 7.0% (8) 0.370

Using mean birthweight (i.e. a continuous variable), the difference • 
between non-smokers and smokers is signifi cant with P = 0.008
Using birthweight in two groups, low birthweight and normal • 
birthweight, the difference between non-smokers and smokers is not 
signifi cant with P = 0.370
In the same dataset, categorization of birthweight into two groups • 
has discarded information and gives a less signifi cant (bigger) 
P value
Hence when data are categorized there is • less statistical power to 
detect a difference (b Sample size for comparative studies, p. 62)
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Outcomes: continuous and categorical 
(continued)
Effects of categorization on sample size

Categorizing continuous data into two groups discards much data- 
If a continuous variable is used for analysis in a research study, a - 
substantially smaller sample size will be needed than if the same 
variable is categorized into two groups

Example: effects of categorization on sample size (b Sample 
size for comparative studies, p. 62)

Table 1.6 shows the sample size needed to detect a difference using 
means and the corresponding difference using proportions to illustrate 
the effects on required sample size when a continuous variable is ana-
lysed in two groups. 

The calculations use standard formulae and were done using the 
statistical program NQuery.1 It is assumed that birthweight follows a 
Normal distribution with mean 3500 g and SD 500 g. Power is 90% and 
signifi cance level is 5%.

Table 1.6 Sample size needed to detect a difference in mean birth-
weight (BW) between two groups and the corresponding sample size 
(SS) needed to detect an equivalent difference in percentage low 
birthweight (<2500 g, LBW)

Difference in BW SS Difference in % LBW SS

 50 g 2103 2.9–2.3% 13 877

100 g  527 3.6–2.3%  3561

150 g  235 4.5–2.3%  1521

200 g  133 5.5–2.3%  814

250 g  86 6.7–2.3%  503

This example illustrates that, for the same size of difference, categoriza-
tion increases required sample size considerably

Other effects of categorization of continuous data
Categorizing continuous data into two groups can lead to problems in • 
statistical analysis and give biased estimates or conceal relationships. 
Further discussion is beyond the scope of this book, but Altman2 and 
Senn3 give some further details
Note that grouping is less problematic if several groups are used. • 
For example, in regression analyses (b Chapter 12, p. 393) it can be 
helpful to analyse age in, say, fi ve-year groups
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Best choice?
Categorization of a continuous variable into two groups loses much - 
data and should be avoided wherever possible
Categorization of a continuous variable into several groups is less - 
problematic as fewer data are lost. It may be useful in regression 
analyses where non-linear relationships are being explored

References
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1080.
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Collecting additional data
Descriptive, predictive and exposure data
Similar principles apply to these as apply to the selection and recording of 
main outcomes

Continuous variables are preferable from a statistical viewpoint, since • 
they will give more precision to analyses
If the data are obtained from notes or from direct enquiry then they • 
should be recorded with adequate precision 
If the data will be from a self-completed questionnaire, then subjects • 
may prefer to tick boxes rather than give exact numbers and the 
tension between accuracy and completeness will come into play 
(b Questions and questionnaires, p. 82) 

How much data to collect?
Research studies require certain specifi c data which must be collected to 
fulfi l the aims of the study, such as the primary and secondary outcomes 
and main factors related to them. Beyond these data there are often other 
data that could be collected and it is important to weigh the costs and 
consequences of not collecting data that will be needed later against the 
disadvantages of collecting too much data.

Too little data• : missed data, if not collected, may not be able to be 
collected on a later occasion and so it is important to decide what 
key data are needed
Too much data• : collecting too much data is likely to add to the 
time and cost to data collection and processing, and may threaten 
the completeness and/or quality of all of the data so that key data 
items are threatened. For example if a questionnaire is overly long, 
respondents may leave some questions out or may refuse to fi ll it 
out at all.
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The study protocol
Research protocol
The protocol is a written document that summarizes the proposed study. 
It is useful because it focuses ideas about the research question and sets 
the aims in the context of work already done. It documents the design, 
sample size, and the planned statistical analysis, and provides a timetable 
for the study. It therefore provides a good working document/template 
for applications for ethical approval and funding.
 The research protocol should include the following items:

Title• 
Abstract• 
Aim of study• 
Background• 
Study design• 
Sample size (if relevant)• 
Plan of the statistical analyses• 
Ethical issues (if relevant)• 
Costs• 
Timetable• 
Staffi ng/resources• 

Clinical protocol
Guidelines to describe good practice in different clinical situations, for • 
example to describe how patients should be managed
May be part of research protocol• 

Operational protocol
This will be more detailed than research protocol as it gives full details of 
how study will be carried out and the guidelines for specifi c situations. 



53THE STUDY PROTOCOL

Example of a published protocol

Cools et al. published a study protocol for an individual patient data 
meta-analysis of elective high frequency oscillatory ventilation in 
preterm infants with respiratory distress syndrome.1 The protocol is 
too long (13 pages) to reproduce here but key sections are included. 
The full protocol can be obtained free from the BMC website (M www.
biomedcentral.com/1471-2431/9/33).

Background: This section described:
The clinical problem and the reason why the study was needed• 
The limitations of an aggregate data meta-analysis• 
The benefi ts given by the proposed individual patient data meta-• 
analysis 

Methods and design: This section described:
The objectives of the new study• 
How the individual studies for the meta-analysis were identifi ed and • 
the inclusion/exclusion criteria
Data management• 
The data items obtained from the individual trialists• 
The planned statistical analyses including the primary and secondary • 
outcomes
The planned subgroup analyses• 
The planned sensitivity analyses• 
Additional analyses• 
Ethical considerations• 
Project management including the roles of the core group, the trialist • 
group and the advisory group
Funding obtained and competing interests• 
Publication policy• 

Reference
1 Cools F, Askie LM, Offringa M. Elective high-frequency oscillatory ventilation in preterm infants 

with respiratory distress syndrome: an individual patient data meta-analysis. BMC Pediatr 2009; 
9:33.
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Sampling strategies
Introduction
Whenever a sample is used to provide information about a wider popula-
tion, we have to consider how the sample is to be chosen. There are two 
key properties of samples which impinge on a study. First is the size of 
the sample, which affects the precision of the analyses. We will address 
this issue below. Second is the choice of sample, which needs to be rep-
resentative of the underlying population of interest for the results to be 
generalisable to that population. 

Convenience sample
Many studies use a sample of patients available at a particular time/place, 
for example patients who attend an asthma clinic may be recruited into a 
survey of the use of spirometers. The results of this study will apply to the 
population from which this sample is drawn and may not apply to other 
populations because patients’ attendance at a clinic may be due to their 
response to treatment or their use of spirometers. Hence they may not 
be representative of all patients using spirometers.

It is important when using a convenience sample to collect and report 
information about the baseline characteristics of the sample so that the 
generalizability of this sample can be deduced.

Quota sample
In choosing a quota sample, the researcher aims to identify a representa-
tive sample by choosing subjects in proportion to their numbers in the 
population of interest. For example if age, marital status, sex, and employ-
ment status were important characteristics, then the researcher would 
select a number of subjects with each combination of these characteris-
tics so that the overall proportions with the characteristics refl ected the 
proportions in the population. Quota sampling is often used in market 
research but is less common in medical research. The diffi culty with quota 
sampling is that subjects recruited may differ from those not-recruited in 
subtle ways, for example if the sample is obtained by knocking on doors 
or by approaching people in the street or by telephoning, certain sections 
of the populations will be excluded. Therefore a quota sample provides 
no estimate of the true response rate and may not be representative of 
the desired population. 

Random sample (simple random sample)
A random sample is chosen so that each member of the population has 
an equal chance of being chosen and so the selection is completely inde-
pendent of patient characteristics. In order to draw a random sample a list 
of the population is needed, the sampling frame. A random sample will be 
representative of the population from which it was chosen because the 
characteristics of the individuals are not considered when the selection is 
made. Random sampling can be done using computer programs.
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Stratifi ed sample
Stratifi ed samples are used when fi xed numbers are needed from partic-
ular sections or strata of the population in order to achieve balance across 
certain important factors. For example a study designed to estimate the 
prevalence of diabetes in different ethnic groups may choose a random 
sample with equal numbers of subjects in each ethnic group to provide a 
set of estimates with equal precision for each group. If a simple random 
sample is used rather than a stratifi ed sample, then estimates for minority 
ethnic groups may be based on small numbers and have poor precision. 
In terms of effi ciency, a stratifi ed sample gives the most precise overall 
(weighted) estimate, where the overall estimate is weighted according to 
the fractions sampled in each stratum.

Cluster sample
Cluster samples may be chosen where individuals fall naturally into groups 
or clusters. For example, patients on a hospital wards or patients in a GP 
practice. If a sample is needed of these patients, it may be easier to list 
the clusters and then to choose a random sample of clusters, rather than 
to choose a random sample of the whole population. (In fact it may be 
impossible to list the whole population). Having chosen the clusters, the 
researcher can either select all subjects in the cluster or take a random 
sample within the cluster. Cluster sampling is less effi cient statistically than 
simple random sampling and so needs to be accounted for in the sample 
size calculations and subsequent analyses (b Cluster samples: units of 
analysis, p. 388). 
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Choosing a sample size 
Samples and populations
For pragmatic reasons, research studies nearly always use samples from 
populations rather than the entire population. Sample estimates will 
therefore be an imperfect representation of the entire population since 
they are based on only a subset of the population. As stated previously, 
when the sample is unbiased and is large enough, then the sample will 
provide useful information about the population. As well as considering 
how representative a sample is, it is important also to consider the size of 
the sample. A sample may be unbiased and therefore representative, but 
too small to give reliable estimates. 

Consequences of too small a sample: studies producing 
estimates
Prevalence estimates from small samples will be imprecise and therefore 
may be misleading. For example, suppose we wish to investigate the prev-
alence of a condition for which studies in other settings have reported a 
prevalence of 10%. A small sample of, say, 20 people, would be insuffi cient 
to produce a reliable estimate since only 2 would be expected to have 
the condition and a decrease or increase of 1 person would change the 
estimate considerably (2/20 = 10%, 1/20 = 5%, 3/20 = 15%). Such a study 
needs a large sample to give a stable estimate.

When estimating quantities from a sample such as a proportion or - 
mean, we use the 95% confi dence interval to show how precise the 
estimate is (b Confi dence interval for a proportion, p. 270)
If the confi dence interval is narrow, then the estimate is precise and - 
conversely if the interval is wide then the estimate is imprecise
Sample size calculations determine the number of subjects needed to - 
give a suffi ciently narrow confi dence interval

Consequences of too small a sample: studies making 
comparisons
When we compare two groups we use a signifi cance test to calculate 
the P value and if possible, we calculate the difference and a confi dence 
interval for the difference. For example when we compare mean blood 
pressure in patients given two different treatments for hypertension we 
can calculate the difference in means between the two groups and a 95% 
confi dence interval for the difference. The result of the signifi cance test 
may be statistically signifi cant or non-signifi cant, depending on the size of 
the P value. The P value is affected by the sample size and if the sample 
is too small, there may not be enough data to draw a fi rm conclusion 
about any differences. If the sample is small then, in general, the observed 
difference needs to be larger to be statistically signifi cant. As a conse-
quence, small but important differences may be statistically non-signifi cant 
in small samples. Hence, if there is a true difference between groups in the 
target population, the study must be big enough to give a signifi cant result; 
otherwise incorrect conclusions may be drawn.
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Statistical comparisons are made using signifi cance tests which give a - 
P value (b P values, p. 248)
If the sample is too small a true difference may be missed- 

Calculating sample size
There are formulae for calculating sample size, and the simplest and most 
commonly used are given below. Computer programs can be used such as 
the specialist sample size programs nQuery advisor1 and PASS,2 which do 
a wide range of sample size calculations. Some general statistical analysis 
programs such as Stata3 cover a limited number of situations. The fol-
lowing books also give tables for the calculation of sample size:

Machin D • et al. Sample size tables for clinical studies4

Chow SC • et al. Sample size calculations in clinical research5

Examples
Sample size calculations for studies estimating a mean or proportion, and 
for studies comparing two means or two proportions are shown in the 
following sections in this chapter. Before the calculations can be done 
certain information is needed. This is listed, described and discussed with 
examples of sample size calculations using the programs nQuery, PASS, 
and Stata.

References
1 nQuery advisor: Sample size and power calculations. M www.statsol.ie
2 PASS: Power analysis and sample size software. M www.ncss.com.
3 Stata: Data analysis and statistical software. M www.stata.com.
4 Machin D, Campbell MJ, Tang S-B, Huey S. Sample size tables for clinical studies. 3rd ed. 
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5 Chow SC, Shao J, Wang H. Sample size calculations in clinical research. 2nd ed. Boca Raton, FL: 

Chapman & Hall/CRC, 2008.
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Sample size for estimation studies: 
means
Estimating a mean with a specifi ed precision
The following information is required:

The standard deviation (SD) of the measure being estimated• 
The desired width of the confi dence interval (d)• 
The confi dence level• 

The standard deviation is needed because the sample size depends 
partly on the variability of the measure being estimated. The greater the 
variability of a measure, the greater the number of subjects needed in the 
sample to estimate it precisely. 

The standard deviation can be estimated from previously published 
studies on the same topic, from contact with another worker in the fi eld 
or from a small pilot study. 

The desired width of the confi dence interval, d, indicates the 
precision of the mean and is decided by the researcher. 

The confi dence level is usually set at 95%, giving a sample confi dence 
interval that contains the true population mean with probability 95%. 
Other values such as 90% or 99% can be used, but are unusual in practice. 

Assuming that the confi dence level is 95%, the sample size, n, is then 
given by: 

n = 1.962 x 4 SD2/d2

To change the confi dence level, change the multiplier ‘1.962’ as follows.

95% confi dence level: n = 1.962 x 4 SD2/d2

90% confi dence level: n = 1.642 x 4 SD2/d2

99% confi dence level: n = 2.582 x 4 SD2/d2

Where 1.96, 1.64, and 2.58 are the two-sided 5%, 10%, and 1% points, 
respectively, of the Normal distribution.



59SAMPLE SIZE FOR ESTIMATION STUDIES: MEANS

Example

Suppose we wish to estimate mean systolic blood pressure in a patient 
group with a 10 mmHg-wide 95% confi dence interval, i.e. 5 mmHg either 
side of the mean. Previous work suggested using a standard deviation 
of 11.4.

The standard deviation (SD) of the measure being estimated = 11.4- 
The desired width of the confi dence interval (d) = 10- 
The confi dence level = 95%- 

n = 1.962 x 4 SD2/d2

n = 15.372 x 11.42/102

n = 20

Suppose we reduce the width of the confi dence interval to 5 mmHg? 
n = 1.962 x 4 x 11.42/52

n = 80

So doubling the precision leads to a quadrupling of the sample 
size.
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Sample size for estimation studies: 
proportions
Estimating a proportion with a specifi ed precision
The following information is required:

The expected population proportion, p• 
The desired width of the confi dence interval (d)• 
The confi dence level• 

The expected population proportion is the best guess of what the 
value will be. This need not be accurate but an approximate fi gure, such as 
0.02 (2%) or 0.05 (5%) or 0.10 (10%), etc. This guess can be obtained from 
previously published studies on the same topic, from contact with another 
worker in the fi eld or from a small pilot study. The ‘guess’ does not need 
to be very accurate and in most cases, the researcher will have an idea of 
what the value will be. If no guess is possible then use 0.50.

It may appear counter-intuitive to need to use a ‘guess’ of the value of 
the proportion in the sample size calculations for a study to produce an 
estimate. However, it is needed because the variability of a proportion 
which is needed in the calculation depends on the proportion itself. In 
the case of estimating a mean, the variability (estimated by the standard 
deviation), is independent of the mean. 

The desired width of the confi dence interval, d, indicates the 
precision of the proportion and is decided by the researcher. 

The confi dence level is usually set at 95%, giving a sample confi dence 
interval that contains the true population proportion with probability 
95%. 

Assuming that the confi dence level is 95%, the sample size, n, is then 
given by: 

n = 1.962 x 4 p(1–p)/d2

Note that this formula uses the proportion and not the percentage. 
Although these are effectively the same, this formula can only be used 
with p expressed as a proportion.

To change the confi dence level, change the multiplier ‘1.962’ as follows:

95% confi dence level: n = 1.962 x 4 p(1–p)/d2

90% confi dence level: n = 1.642 x 4 p(1–p)/d2

99% confi dence level: n = 2.582 x 4 p(1–p)/d2
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Example

Suppose we wish to estimate the prevalence of asthma in an adult 
population with the width of the 95% confi dence interval 0.10, an accu-
racy of ± 0.05. An estimate of the prevalence of asthma is 0.10 (10%).

The expected population proportion, p = 0.10• 
The desired width of the confi dence interval (d) = 0.10• 
The confi dence level = 95%• 

n = 1.962 x 4 p(1–p)/d2

n = 15.37 x 0.1(1–0.1)/0.102

n = 138

If we choose to double the accuracy to give a 95% confi dence interval 
of 0.05 width:
n = 1.962 x 4 x 0.1 (1–0.1)/0.052

n = 553

Again doubling the precision leads to a quadrupling of the sample 
size.
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Sample size for comparative studies
Signifi cance tests: type 1, type 2 errors
A signifi cance test to compare two groups in a sample may lead us to an 
incorrect conclusion about the target population in two different ways:

Type 1 error:- 
We conclude that there is a difference between the groups in the 
target populations when in fact there is not. This is actually the 
signifi cance level of the test and so when we use 0.05 or 5% as the 
cut-off for statistical signifi cance, then the probability of a type 1 
error is 5%. This is often denoted by ‘A’.
Type 2 error:- 
We conclude that there is no difference between the groups in the 
target population when in fact a real difference of a given size does 
exist. The type 2 error is often denoted by ‘B’ and 1–B is the power 
of the study. 

Note that this means that the power of a study is the ability of the study 
to detect a difference if one exists.

In calculating the required sample size for a study we want to minimize 
type 1 and type 2 errors and therefore avoid spurious statistical signifi -
cance and avoid missing a real difference. The signifi cance level is usually 
kept at 5%, by convention, and we set a high value of the power, of at least 
80%, and preferably 90% or more.

Clinically important difference
The minimum clinically important difference is needed in the sample size 
calculations. This is the size of difference that the researcher considers to 
be so important that they would not want their study to miss it. In other 
words, this size of difference is considered to be clinically meaningful. 
If the study is too small to detect this size of difference, and it exists, 
the comparison will be non-signifi cant and the study will therefore be 
inconclusive. 

The choice of a clinically important difference is not a statistical one, 
but relates to the context of the study. It can be diffi cult to decide how 
big a difference would be important in a given context. The literature and/
or discussions with colleagues may help decide what size of difference is 
important. 

Pre-determined sample size
In some situations, the sample size is fi xed either due to the limited avail-
ability of subjects, or due to time or fi nancial constraints. In such cases, 
sample size calculations should still be done to see how big a difference 
could be detected with the given sample size. If the available sample size 
is suffi cient to achieve the aims of the study then the study can go ahead 
but if it cannot then it is questionable whether to proceed. It is better to 
know in advance if the sample size is too small and choose not to do the 
study than to conduct a study and then fi nd that it is too small and turns 
out to be inconclusive. 



63SAMPLE SIZE FOR COMPARATIVE STUDIES

Some statisticians consider that it is unethical to carry out research 
which is likely to be inconclusive due to small sample size as it is a 
waste of resources, and/or a waste of patients’ time and/or can lead to 
a wrong interpretation that there is no real difference (i.e. a type 2 error). 
Others argue that small studies are justifi ed if they add to the pool of 
evidence and can be combined with other small studies in a meta-analysis 
(b Chapter 13, p. 447).
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Sample size for comparative studies: 
means
In a comparative study we choose the sample size to have a high prob-
ability of detecting a difference of a given size if it exists but also have a low 
probability of fi nding a signifi cant difference when no real difference exists. 
In other words we want to have high power (and hence low type 2 error) 
and a low signifi cance level (low type 1 error). The formula used for com-
paring means and comparing proportions balances these probabilities and 
allows us to calculate sample sizes given certain information. 

The following information is required:
The standard deviation (SD) of the measure being compared• 
The minimum difference (d) that is clinically important • 
The signifi cance level (• A)
The power of the test (1–• B)

The standard deviation is estimated from previously published studies on 
the same topic, from contact with another worker in the fi eld or from a 
small pilot study. 

The minimum difference that is clinically important is decided beforehand 
by the researcher. 

The signifi cance level, Aa is the maximum acceptable type 1 error rate 
and is usually set at 5%. 

The power of the test, 1–B, is the probability of getting a signifi cant 
result when the true difference between the means is d and is set at 80% 
or more, preferably 90%.

To compare the two means we need the following number of patients 
in each group:

n
K SD
d

= 2 2

2

The total sample size is 2n. K is a multiplier that depends on the 
signifi cance level and power and comes from the Normal distribution. 
Details of the formula and the multipliers (Table 1.7) are given in Bland’s 
Chapter 18.1
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Example

(i) A study of the effects of smoking on birthweight should be able to 
show a difference between smokers and non-smokers of 200 g with high 
power. SD for birthweight is 500 g. We will use a signifi cance level 5% 
and power 90%, giving K=10.5 from Table 1.7.

The standard deviation (SD) of the measure being compared = 500- 
The minimum difference (d) that is clinically important = 200- 
The signifi cance level (- A) = 5%
The power of the test (1–- B) = 90%

n
K SD
d

= 2 2

2

n = ×2 1× 0 5 500
200

2

2

n = 131 in each group

(ii) Suppose we choose 5% signifi cance level and 80% power. This gives 
K = 7.8:

n = ×2 7× 8 500
200

2

2

.

n = 98 in each group

(iii) Suppose we could only recruit 50 in each group, what size difference 
could be detected with power 80% and signifi cance level 5% (K = 7.8)?

n
K SD
d

= 2 2

2

Rearrange to give:

d
K SD

n
2

22=

d2
22 7 8 500

50
78 000= ×7 8 =.

d = 280

Under these circumstances, the study will have high probability to 
detect differences of 280 g or more. An observed difference of 200 g 
will not be statistically signifi cant. In this situation, it may be decided that 
the study is unlikely to be conclusive and is not worthwhile.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Sample size for comparative studies: 
proportions
To calculate the sample size for a study comparing two proportions, the 
following information is required:

The expected population proportion in group 1, P- 1
The expected population proportion in group 2, P- 2
The signifi cance level (- A)
The power of the test (1–- B)
The expected population proportion in group 1 and the expected 

population proportion in group 2 are the best estimates of what these 
values will be. The difference therefore refl ects the anticipated change in 
the proportion which would be regarded as clinically important. 

The signifi cance level, A is the type 1 error and is usually set at 5%. 
The power of the test, 1–B, is the probability of getting a signifi cant 

result when the true difference between the proportions is d and is set at 
80% or more, preferably 90%.

n
K P P= −[ (P ) (P )]

( )P P
1 1(PP 2 2PP(

1 2P PP P 2

1 1P− P (P1PP (PP

Where n is the number in each group as before.
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Example

A study is planned to compare patient outcome following the current 
form of surgery and a new method. It is expected that the new surgery 
will have less complications. The proportion of patients who develop 
complications after undergoing current surgery is 15% and it is expected 
that the new form of surgery will have a 5% complication rate. 

Assuming signifi cance level 5% and power 90%, gives K = 10.5 from 
Table 1.7.

The expected population proportion in group 1, • P1 = 0.15
The expected population proportion in group 2, • P2 = 0.05
The signifi cance level (• A) = 0.05
The power of the test (1–• B) = 0.90

n
K P P

n

= −

= + −

[ (P ) (P )]
( )P P

. [ . ( . ) . (

1 1(PP 2 2PP(

1 2P PP P 2

1 P− P 1(P1PP (PP

10 0[× 1 0− 0. 1( 000
15 0 2

. )05 ]
( .0 . )05

n = 183 in each group

Table 1.7 Multipliers for studies comparing two means or two 
proportions

Power (1–β) Signifi cance level (α)

5% 1% 0.1%

80%  7.8 11.7 17.1

90% 10.5 14.9 20.9

95% 13.0 17.8 24.3

99% 18.4 24.1 31.6
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Sample size calculations: further issues
Assumptions of sample size formulae for means and 
proportions

There is no attrition, i.e. the total number of patients successfully • 
recruited and who complete the study is equal to the number required 
For comparative studies, there are equal numbers of subjects in each • 
group
Samples are simple random samples; any randomization is at the • 
individual level. Sample size calculations are different for cluster 
samples or cluster randomization and the usual calculations will give 
too few subjects (see below)
For comparative studies, a simple comparison of two groups only will • 
be made. Multiple regression or logistic regression (b Chapter 12, 
p. 393) is not planned
The samples are large enough to use large sample methods for the • 
analysis (b 95% Confi dence interval for a proportion, p. 244)

Sample size calculation in other situations
When attrition is expected• 
If there are likely to be losses, estimate how many and multiply up 
the calculated numbers to allow for them so that the total number 
included in the study is as planned. For example if the calculated 
required sample size is 80 in total and it is anticipated that 20% of those 
recruited will not complete, then 100 patients should be recruited to 
ensure that 80 will complete
Unequal numbers in the groups- 
Unequal numbers in the groups can be dealt with in nQuery1 and 
PASS2 for many situations, and in Stata3 for simple cases
Cluster randomization• 
When individuals are allocated to treatments in groups or clusters 
rather than as individuals, the sample size calculations are different. 
The intraclass correlation coeffi cient (ICC) between the clusters 
is needed for the calculations in addition to the usual quantities. The 
ICC summarizes the correlation between clusters as a ratio of the 
total variation between clusters to the total variation between and 
within clusters. Hence the ICC summarizes the extent of the ‘clustering 
effect’. When individuals in the same cluster are much more alike 
than individuals in different clusters with respect to an outcome, then 
the clustering effect is greater and the impact on the required sample 
size is correspondingly greater. In practice there can be a substantial 
effect on the sample size even when the ICC is quite small. For more 
information about cluster randomization, see Kerry and Bland4 and 
Donner and Klas.5 It is probably best to consider getting statistical 
advice when calculating a sample size for a cluster trial
Multifactorial analyses are planned• 
Here the sample size calculations are diffi cult. The statistical power 
needs to be higher than for a two-group comparison. The calculations 
can be done if the correlation between the variables is available, but 
often this is not known. In such circumstances, a rule of thumb that can 
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be used is to increase the sample size by 10% for every extra variable 
added. (Note that for a categorical variable, the number of variables 
here is the total number of categories minus 1).
Small sample situations• 
If the calculated sample size is small, say, fewer than 50 per group, then 
large sample methods may not be possible for the statistical analysis 
and so the sample size calculations may need adjusting. This may be 
handled by the sample size program but it is best to check and seek 
advice if in doubt.
Survival analysis• 
If you are comparing the proportion of deaths in two groups at a fi xed 
point and there is no censoring, then the sample size calculations for 
the comparison of two proportions can be used. If a log rank test is to 
be used to compare the survival curves then these calculations are not 
suitable. nQuery1 will do the calculations, and the formulae are given in 
David Collet’s book in Chapter 10.6

Equivalence trials• 
Sample size calculations for equivalence trials need specialized formulae 
which take into account the limits of equivalence that are acceptable in 
the trial. These can be done in nQuery and PASS.
Other designs and analyses• 
The latest versions of nQuery1 and PASS2 will calculate sample sizes for 
a wide range of situations
Other software• 
We have only commented on software that we have used. An internet 
search brings up several sites with sample size software. At the time of 
writing, the web address referenced from the University of California 
San Francisco, School of Medicine, lists other free software that is 
available7, although we have not tested these. 

References
1 nQuery advisor: Sample size and power calculations. M www.statsol.ie
2 PASS: Power analysis and sample size software. M www.ncss.com.
3 Stata: Data analysis and statistical software. M www.stata.com.
4 Kerry SM, Bland JM. Sample size in cluster randomisation. BMJ 1998; 316(7130):549.
5 Donner A, Klar N. Design and analysis of cluster randomization trials in health research. London: 

Arnold, 2000.
6 Collett D. Modelling survival data in medical research. 2nd ed. Boca Raton, FL: Chapman & Hall/

CRC, 2003.
7 UCSF Biostatistics: Power and sample size programs. Available from: M www.epibiostat.ucsf.

edu/biostat/sampsize.html (accessed 5 Jan 2009).
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Sample size: other issues
When to do replicate measurements 
In some situations, measurements are hard to make or are variable and so 
it is best if several measurements are taken. We give some suggestions:

For quantities that are hard to measure accurately, such as skinfold • 
thickness, take three values and use the mean
For quantities that depend on patient effort, e.g. peak fl ow rate, take • 
three values and use the maximum
For quantities that vary, such as blood pressure which varies across • 
the day and is subject to ‘white coat syndrome’, it may be necessary to 
take several measurements over a period of time to get an accurate 
assessment 
For quantities that vary due to external factors, such as blood sugar • 
levels which vary with food intake, alternative measures may be needed 
(e.g. HbA1c level as a surrogate for blood sugar).

Are sample size calculations as described here always 
needed?

Not if the study is a qualitative study • 
Not always for a small survey • 

If the study is a descriptive survey then sample size calculations may be 
diffi cult. However, it is important to ensure there are suffi cient subjects 
to achieve the aims of the study. For example, in a survey of satisfaction 
in two patient groups, there will need to be adequate numbers in the two 
groups to be able to compare satisfaction. It is useful in such situations to 
list the main cross tabulations that will be needed and to ensure that total 
numbers will give adequate numbers in the individual table cells.

Not always for a pilot study – see Gill Lancaster’s paper• 1 for a general 
discussion of pilot studies and Steven Julious’s paper regarding sample 
size2

References
1 Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations 

for good practice. J Eval Clin Pract 2004; 10(2):307–12.
2 Julious S. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat 2009; 4(4):

287–91.
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Using a statistical program to do the 
calculations
The following examples show the same sample size calculations in 
nQuery,34 in PASS,2 and in Stata.3 The same information was input into 
each program to give the required sample size per group. 

The study was to compare lung function in two groups of infants. Power 
was set at 90% and signifi cance level at 5%. A difference of 0.5 standard 
deviations was considered to be clinically worthwhile. Equal numbers 
were to be in each group.

Examples

nQuery1

nQuery is a menu-driven program where the user chooses commands 
from menus provided. The data are entered into a table on the screen 
and when all fi elds are complete, the number per group is automatically 
calculated. This is shown below in bold.

Two group t-test of equal means (unequal ‘ns’)

Test signifi cance level, a 0.050
1 or 2 sided test? 2
  Group 1 mean, m1 2.600
  Group 2 mean, m2 2.100
 Difference in means, m1 – m2 0.500
 Common standard deviation, s 1.000
Effect size, d = |m1 – m2| / s 0.500
Power ( % ) 90
 n1 86
 n2 86
Ratio: n2 / n1 1.000
N = n1 + n2 172
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PASS2 
Like nQuery, PASS is a menu-drive program, The data are entered 
into a table on the screen and when all fi elds are complete, the number 
per group is automatically calculated. This is shown in bold.

Two-Sample T-Test Power Analysis
Numeric Results for Two-Sample T-Test
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2
The standard deviations were assumed to be known and unequal.

Allocation

Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2

0.90 85 85 1.00 0.050 0.010 2.6 2.1 1.0 1.0

Stata3

Stata is a command-driven program which means that the actual 
commands need to be typed and then the calculations are done. The 
command is in bold below and the following text is the results that the 
program gives. The sample size per group is given as 85 per group.

.sampsi 2.6 2.1, p(0.90) sd(1)
Estimated sample size for two-sample comparison of means
Test Ho: m1 = m2, where m1 is the mean in population 1

and m2 is the mean in population 2
Assumptions:

alpha = 0.0500 (two-sided)
power = 0.9000
m1 = 2.6
m2 = 2.1
sd1 = 1
sd2 = 1
n2/n1 = 1.00

Estimated required sample sizes:

n1 = 85
n2 = 85

Note
Two of the three programs give the sample size as 85 and the other as 
86. This is because the calculations involve rounding. In practice this small 
difference does not matter.

References
1 nQuery advisor: Sample size and power calculations. M www.statsol.ie
2 PASS: Power analysis and sample size software. M www.ncss.com.
3 Stata: Data analysis and statistical software. M www.stata.com.
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Collecting data

Introduction
Data collection is a key part of the research process, and the collection 
method will impact on later statistical analysis of the data. In this chapter 
we give suggestions for designing good questions and questionnaires, and 
discuss the consequences of different question designs on the resulting 
statistical analyses.
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Data collection forms
Introduction
When the research question and study design are settled and we have 
decided which data to collect, we need to design the data collection 
forms. These are needed to provide a written or electronic record of the 
data collected and to facilitate data analysis using a computer. The forms 
can be paper or electronic. Below we give some specifi c and general guid-
ance for paper and electronic forms.

Paper forms
Try to make them clear and easy to fi ll out• 
Allow adequate space for inserting numbers and text• 
Consider using a colour other than white for the form to make them • 
more attractive to work with
When more than one form is required, such as when the study involves • 
follow-up on several occasions, it can be helpful to use a different 
colour for each occasion to help with tracking and fi ling
Long forms can be off-putting for people fi lling them in so consider • 
how to make the form as short as possible while including all necessary 
questions

Electronic data capture
Make sure each original data entry form or data collection session is • 
kept for later checking. Save any edited forms in new fi les
Make sure each page of a form, or each form where there are several, • 
can be uniquely identifi ed with a particular subject so that they can be 
merged together correctly later
Keep careful audit trails with dates and fi le names and back up all data• 
Keep careful track of the master copy of data from where editing and/• 
or additional data collection is taking place
Use fi lters to jump to later questions where particular questions are • 
not applicable
Build in checks for impossible and/or inconsistent values wherever • 
possible to avoid data recording errors
Consider having the coding ‘programmed in’ (see also • b Form fi lling 
and coding, p. 78)

All forms
Give an ID number for each subject for tracking purposes• 
Record the date the form was fi lled out and by whom, if relevant• 
Include clear instructions for fi lling out the form and for specifi c • 
questions as appropriate. Give example(s) of how to fi ll out the form 
either within the form itself or as a separate document
In large studies, training in fi lling out the forms may be needed to • 
ensure accuracy and consistency
Design the form to minimize data recording errors, e.g. give boxes to • 
tick where possible rather than leave the response open
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Where data types may vary from subject to subject for a particular • 
item, ensure it is clear what is recorded, e.g. metric or imperial units 
may be available for height – note which is used
Number the questions or items to be collected. Number the pages in • 
paper forms
Decide whether to use boxes, lines, or spaces for answers, depending • 
on the space available and the data to be recorded
Think about the anticipated data analysis so that data are collected in • 
the appropriate format, e.g. if a mean will be needed for the analysis, 
then don’t record the data in categories, record the actual value
Have a well-organized fi ling system so that individual forms can be • 
easily found if needed at a later date

Anonymity and confi dentiality
Use an ID number rather than a name as the identifi er to maintain • 
confi dentiality. The actual names and corresponding numbers should 
be stored separately and securely
If the study is anonymous, still include an ID for each form for tracking • 
purposes – sometimes data analysis can throw up a query that may be 
resolved if the specifi c original form can be checked

Piloting
It is useful to test the data collection process in a range of • 
circumstances to make sure it will work in practice
This usually involves trialling the data collection form on a smaller • 
sample than intended for the study and enables problems with the 
data collection form to be identifi ed and resolved prior to main data 
collection
With new questions or new items to be collected, piloting helps ensure • 
the form can accommodate all possible responses where a tick box 
approach is used, or simply check there is enough space where a free 
text answer will be given
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Form fi lling and coding
Form fi lling
Data collection forms nearly always need instructions on how to fi ll them 
in. The level of detail in the instructions depends on the complexity of the 
form and the level of experience of the person fi lling in the form. Where 
the form or the source of data is complex, for example, when extracting 
data from hand-written clinical notes, then some formal training may be 
needed to ensure accuracy and consistency. This is especially true where 
more than one person will be extracting data as in a large study. Below we 
list the sorts of items that may need consideration:

Writing• : use clear writing and black pen, not pencil
Mistakes• : don’t over-write mistakes, cross through and rewrite or use 
correction fl uid
Examples• : these can be helpful to show how to fi ll the form in
Guessing• : sometimes to be helpful, data extractors fi ll in missing 
values with what they assume the data value should be. For example 
if patient’s sex is not recorded on the source document they may 
attempt to guess it from the fi rst name. This should be explicitly 
discouraged to avoid bias
Calculations• : in general don’t expect the person fi lling out the form 
to do calculations as this may lead to errors, e.g. calculating a length of 
time between two dates. Instead, record each piece of information to 
allow computation of the particular value later

Coding
Coding is needed to allow non-numerical data or numerical data that 
has been recorded in categories to be used in statistical analysis with a 
computer. Coding assigns a unique number to each possible response. 
Some statistical packages will analyse non-numerical data but it is easier 
to assign a number to each category. This means that when the data are 
analysed and reported, the appropriate label needs to be assigned back to 
the numerical value to make it meaningful.

The coding scheme should be designed at the same time as the form 
so that it can be built into the form. This can be done by writing the 
code next to the box (b see Examples of questions with possible coding, 
p. 80) or by having a column on the right-hand side for the code to be 
written in later. It is easiest if the form is effectively self-coding to save 
time and avoid errors, but this may make the form too cluttered.

Choosing the codes
Use intuitive codes if possible, e.g. use 1/0 for yes/no such that • 
responses given as ‘yes’ are coded 1 and those given as ‘no’ are coded 
0. This also has the added advantage that the variable’s 0/1 values can 
be simply summed to give the number of positive responses
Use codes 1, 2, 3, etc. where data fall into more than two categories• 
If the fi rst category is a ‘null category’ such as when recording pain as • 
‘no pain, mild pain, moderate pain, and severe pain’, it may be sensible 
to use the codes 0, 1, 2, 3
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It is essential to keep a record of the codes for current and later • 
reference

0 Although the choice of coding scheme does not affect the actual statis-
tical analysis, an intuitive scheme will make it easier to use, and mistakes 
less likely to occur. One study that we know of used the codes 1 for ‘yes’ 
and 2 for ‘no’ in some places and 1 for ‘no’ and 2 for ‘yes’ in others. This 
inconsistency was confusing and could have led to errors.

Missing data
Missing data are sometimes given a special code, such as 9 with the • 
appropriate number of 9s that could not be a real response
For example: for a yes/no response, 9 could indicate a missing value; • 
for height recorded in cm, 999 could be used, as this is not a possible 
value
Computer packages may use a dot (.) to denote a missing value• 
It may be important to distinguish between data that are simply missing • 
from the original source and data that the data extractor failed to 
record. This can be achieved using different codes
Sometimes a response to a question may be ‘not applicable’, such as • 
when asking the number of cigarettes smoked when the respondent 
has already answered ‘no’ to a question about whether they currently 
smoke. It may be helpful to code such responses differently, for 
example using 8s rather than 9s.
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Examples of questions with possible 
coding
Does the patient currently smoke?
� Yes   (=1)
� No   (=0)

This is a single yes/no question

Patient’s legal marital status
� Married  (=1)
� Single  (=2)
� Widowed (=3)
� Divorced (=4)
� Separated (=5)

This is a single question with multiple options

Patient’s self-reported pain level
� None  (=0)
� Slight pain (=1)
� Moderate pain (=2)
� Severe pain (=3)

This is a single question with multiple options

Patient’s current medication for pain
� TCA  (=0/1)
� Anti-epileptic (=0/1)
� Topical analgesic (=0/1)
� Opioid  (=0/1)
� NSAID  (=0/1)
� Other  (=0/1)

This is a multiple question for which each option is no or yes since patients 
may be taking more than one drug or none at all

Care in the statistical analysis: a footnote
0 The use of numerical codes for non-numerical data may give the false 
impression that these data can be treated as if they were numerical data 
in the statistical analysis. This is not so. We could calculate mean marital 
status using the data coded 1–5 in the example above, but since these 
codes have no intrinsic meaning, this would be nonsensical.
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Data quality
Introduction
2 It is critical that data quality is monitored and that this happens as the 
study progresses. It may be too late if problems are only discovered at the 
analysis stage. If checks are made during the data collection then problems 
can be corrected. More frequent checks may be worthwhile at the begin-
ning of data collection when processes may be new and staff may be less 
experienced. Suggestions are as follows.

Check completion rates for forms
Are all the pages fi lled out? If not where is it going wrong?• 
Are all the questions/sections completed? If not why not?• 
Do gaps refl ect truly unknown data or have some data been missed • 
out accidentally?
Is the writing clear?• 

Check accuracy
Double-check a sub-sample to determine quality• 
Consider double-checking any critical data• 

Actions as necessary
Issue new instructions• 
Re-train people collecting data• 
Alter the forms• 
Recheck after changes have been implemented• 
Document the quality control process• 
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Questions and questionnaires
Designing questions
Designing questions is an art as much as it is a science. The subject is dis-
cussed in detail in some books of research methods such as Ann Bowling’s 
book.1 We will give a brief summary of the main issues here.

Different types of questions can be asked in medical research: facts, 
opinions/views/feelings, and closed and open questions. These are described 
below.

Facts
How old are you?• 
Do you smoke cigarettes?• 

The answer to a question of fact is absolute in that there is a single true 
answer. Of course, subjects may not give the correct answer either delib-
erately or unintentionally, and we may not know this.

Some information which is clearly a fact is diffi cult to ascertain, such 
as self-reported weight, partly because people may simply not know, 
and partly because they may report it inaccurately. Other ‘facts’ such as 
measurements of height may be inaccurate due to measurement error. 
We will not deal any further with measurement error in this section.

Opinions/views/feelings
Was your last clinic appointment long enough?• 
How do you rate your pain today?• 
Were you satisfi ed with your recent hospital stay?• 

Opinion-type questions are subjective and are therefore much more dif-
fi cult to ask, and the responses are harder to interpret. Seemingly similar 
people may give different responses to the same question, and these 
responses may even vary from day to day in the same person. In addition, 
the response can be affected by the way in which the question is asked.

A leading question is likely to produce a different answer to a more 
neutrally worded question. The following two questions are trying to 
obtain essentially the same information but ask for it in different ways, and 
are likely to obtain different answers:

Do you have any complaints about this service?• 
Are you satisfi ed with this service?• 

Closed questions
These can be either facts or opinion. For example:
Do you smoke cigarettes?
� Yes
� No

This is a closed question because the possible answers are pre-specifi ed.
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Similarly with the subjective pain question:

How do you rate your pain today?
� No pain
� Mild pain
� Moderate pain
� Severe pain

All possible answers are given for the subject to choose their response. 
‘Don’t know’ is also a possible response which may be given as an option 
in a closed question (see b Designing good questions, p. 84).

Open questions
These are questions where the response is not pre-determined by the 
researcher, for example:

Tell us how you feel about your recent hospital stay?
_________________________________________________
_________________________________________________
_________________________________________________

Or as a follow-up to another question where the subject has answered 
‘yes’ and further details are sought:

If you answered ‘yes’ please explain why
_________________________________________________
_________________________________________________
_________________________________________________

0 Answers to open questions cannot be coded as they stand. For coding 
to be possible, similar responses need to be grouped into sub-categories 
and unique codes assigned to each. The groupings chosen will be infl u-
enced by the purpose of the question within the study.

Reference
1 Bowling A. Research methods in health: investigating health and health services. 2nd ed. 

Buckingham: Open University Press, 2002.
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Designing good questions
Introduction
The following sections give tips for writing questions in terms of expres-
sion/language, content, precision, and sensitivity of the subject.

Expression/language
Use simple language and short sentences • 
For example use ‘start’ rather than ‘commence’
When the research involves patients, use lay terms for medical • 
conditions and treatments where this would be more easily understood 
For example use ‘womb’ rather than ‘uterus’, ‘shortness of breath’ 
rather than ‘dyspnoea’
Avoid double negatives • 
For example ‘Is it true that there isn’t a day when you don’t feel pain?’

This is easier to understand when phrased as:
‘Is it true that you feel pain every day?’ or ‘Do you feel pain every day?’

Content
Make sure each ‘question’ only asks one thing and not two or more• 
For example ‘Do you drink tea and coffee?’ This is two questions – the 
subject may drink tea and not coffee and so not know how to answer!
Be careful that closed questions include all possible options• 
For example ‘How many times have you seen the GP this year?’

� 1–2 times
� 3–4 times
� 5 or more times

This does not include an option for those who have not visited the GP 
this year
Be careful with the use of leading questions as the response will • 
be affected by how the question is asked (b Questions and 
questionnaires, p. 82)
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Precision
Avoid subjective words such as ‘usually’ and ‘frequently’, because • 
people will interpret them in different ways
For example ‘Do you usually eat vegetables?’
‘Do you get frequent headaches?’ 

It is better to be specifi c and ask a ‘yes/no’ (‘Do you eat vegetables’) 
question and then ascertain how often if this is of interest (‘every day, 
every 2 days, etc).

Give units for measurements and allow for responses in imperial or • 
metric where both in common use
For example ‘How much did your baby weigh at birth? 
You can give the weight in either g or lb and oz’
_______________________________ g
_______________ lb ______________ oz

Consider when to allow a ‘don’t know’ option for closed questions – • 
sometimes the researcher wants to avoid a ‘don’t know’, and other 
times it is a valid response, such as when testing knowledge.
The following question for medical students illustrates this:

Which one of these medications should not be taken in pregnancy?
(i) Aspirin
(ii) Paracetamol
(iii) Propranolol
(iv) Isotretinoin
(v) Don’t know
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Sensitive topics
Introduction
There are different reasons why a respondent may view a particular topic 
as sensitive and therefore be reluctant to answer questions. For example 
if the topic is:

Personal• , for example income
Embarrassing• , for example sexually transmitted diseases
Threatening•  and/or illegal, for example under-age alcohol use, drug 
use

Demographic data
Demographic questions such as income may be viewed as more sensitive 
than questions on other topics such as occupation. For this reason, it is 
worth considering putting all demographic questions at the end of the 
questionnaire so that any failure to complete these will not jeopardize the 
completion of other questions.

Gaining responses
It can be helpful to put a sensitive topic in a list among non-sensitive • 
topics so that it is not so blunt. For example a survey in school children 
may fi nd it works to include questions on alcohol consumption among 
questions on consumption of soft drinks and snacks
It can be helpful to ‘give permission’ for the respondent to answer • 
positively, by acknowledging that a positive or negative response is 
possible. For example:

‘Some parents smack their children and some do not. Have you ever 
smacked your child?’’

 � Yes � No

Alternatively, we can use an indirect approach by stating a position on • 
the topic and then asking the subject to give their views on this. For 
example:

‘Some people think that smacking children is helpful in bringing up children 
and others do not use smacking. What do you think? Please give your views 
below:’

________________________________________________________

________________________________________________________
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Using randomized responses
This is a statistical technique where the respondent is able to answer a 
sensitive question in such a way as to preserve privacy. One version works 
as follows: the respondent answers a sensitive question either correctly 
or incorrectly with a given probability which is decided, for example, by 
throwing a dice where they are told to answer correctly if the dice is 1, 2, 
3, or 4 and incorrectly if they get 5 or 6. The researcher does not know 
whether the subject has answered correctly or not but probability theory 
can be used to estimate the true prevalence for the sensitive question.

Another version works like this: respondents are given two questions, 
one the sensitive question of interest, and the other an innocuous 
question. Only one question is answered and only the respondent knows 
which. The choice is made using a probability technique again such a 
throwing a dice.

Further details are given in Warner,1 Greenberg et al.,2 Mangat and 
Singh,3 and Franklin.4

Further ways to manage sensitive topics
Ensure and guarantee anonymity (but this means that follow-up is • 
impossible)
Use an independent interviewer such as one who is not involved in the • 
delivery of health care in a hospital-based study
Use interviewers who can build rapport with the subjects and so gain • 
their confi dence
Use online surveys where respondents feel ‘safer’• 

Further information on researching sensitive areas can be found in the 
following sources:

Overall considerations• : Renzetti and Lee, Chapter 15

Reducing question threat• : Foddy, Chapter 96

Cognitive testing• : Willis, Chapter 127

A national example• : the British National Survey of Sexual Attitudes 
and Lifestyles (Natsal) surveys, as described in Mitchell8

Pitfalls• : How asking even an apparently non-sensitive question can go 
wrong, in Barrett9
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1 Warner SL. Randomised response: a survey technique for eliminating evasive answer bias. J Am 
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Designing questionnaires
Layout
2 The layout is as important as the content since it affects questionnaire 
completion rates and therefore impacts on the overall quality of the data 
collected. The following are particularly important for self-complete 
questionnaires:

Give clear instructions and examples of how to answer questions • 
where appropriate
Make it clear and uncluttered• 
Make it easy to navigate with any skips clearly signposted• 
Consider size and length according to who will fi ll this in – a smaller • 
questionnaire is easier to handle but smaller writing is harder to read
Indicate page turns clearly to avoid respondents missing pages• 
Consider which fonts will best suit the intended readers – for example, • 
older people are likely to fi nd small fonts hard to read
Piloting can help identify problems with the questionnaire design and • 
uncover any aspects that need improving (b Data collection forms, 
p. 76)

Using an existing questionnaire
It can be better to use an existing questionnaire if there is one that has 
already been tried and tested. This will save time and will mean that 
results are comparable with those of other researchers. There is usually a 
small charge levied to allow an existing questionnaire to be used.

Sometimes, a study needs to modify an existing questionnaire, perhaps 
to add further questions or adapt it for another setting. It is important 
that the revised questionnaire is validated for use to ensure that it is 
appropriate for the new setting.

Further reading on questionnaires
For a full review of the design and use of questionnaires see McColl and 
colleagues’ Health Technology Assessment monograph.1

Reference
1 McColl E, Jacoby A, Thomas L, Soutter J, Bamford C, Steen N et al. Design and use of ques-

tionnaires: a review of best practice applicable to surveys of health service staff and patients. 
Health Technol Assess 2001; 5(31):1–256.
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Example of a validated questionnaire
The Dermatology Life Quality Index (DLQI)
The questions from the DLQI are reproduced in Figure 2.1. This ques-
tionnaire is commonly used in dermatology to assess the impact of skin 
disease on a patient’s everyday life.

There is a standardized scoring system, with ‘very much’ scoring 3 
points, ‘a lot’ scoring 2, ‘a little’ scoring 1, and ‘not at all’ scoring 0. The 
individual scores are summed to give a total score out of 30. Since 
many published research studies have used the DLQI, its use in clinical 
practice enables clinicians to compare their own patient population with 
those of research studies. Further, this standardized tool enables better 
comparisons between different studies.
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1. Over the last week, how itchy, sore, painful

or stinging has your skin been? 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

Very much

A lot

A little

Not at all 

2. Over the last week, how embarrassed or

self conscious have you been because of your

skin?

3. Over the last week, how much has your skin

interfered with you going shopping or looking

after your home or garden? Not relevant

4. Over the last week, how much has your skin

influenced the clothes you wear? 

Not relevant 

5. Over the last week, how much has your skin

affected any social or leisure activities? 

Not relevant 

6. Over the last week, how much has your skin

made it difficult for you to do any sport?

Not relevant 

Over the last week, has your skin prevented

you from working or studying?

Yes

No Not relevant 

7.

If “No”, over the last week, how much has your

skin been a problem at work or studying?

A lot

A little

Not at all

8. Over the last week, how much has your  skin

created problems with your partner or any of

your close friends or relatives? Not relevant 

9. Over the last week, how much has your skin

caused any sexual difficulties?

Not relevant 

10. Over the last week, how much of a problem

has the treatment for your skin been,

for example, by making your home messy,

or by taking up time? 

Not relevant 

Fig. 2.1 The Dermatology Life Quality Index1.
© AY Finlay, GK Khan, April 1992.1 Reproduced with kind permission.

Reference
1 Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI) – a simple practical measure for 

routine clinical use. Clin Exp Dermatol 1994; 19(3):210–16.
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Designing a new measurement tool: 
psychometrics
Introduction
Sometimes researchers need to develop a new measurement or question-
naire scale, for example, to measure a trait such as emotional stability 
or a symptom such as breathlessness. To do this rigorously requires a 
thorough process. We will outline the main steps here and note the most 
common statistical measures used in the process. Full details of devel-
oping and using measurement scales in health can be found in Streiner and 
Norman1 and a shorter account is given in Bowling.2

2 The following properties of measurement scales are important:

Face and content validity
Face validity

Is the scale measuring what it sets out to measure? This is a subjective • 
assessment and is achieved by consensus among experts.

Content validity
Does the scale cover all the relevant areas? This is also subjective and • 
is achieved by consensus among experts.

Reliability and stability
Are the measurements reproducible? If we repeat the measurement will 
we get the same answer? This applies in the following ways:

Between-observers consistency:•  is there agreement between 
different observers assessing the same individuals?
Within-observers consistency:•  is there agreement between 
assessments on the same individuals by the same observer on two 
different occasions?
Test-retest consistency:•  are assessments made on two separate 
occasions on the same individual similar?
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Internal consistency: Cronbach’s alpha
If a scale has several questions or items which all address the same issue 
then we usually expect each individual to get similar scores for those 
questions, i.e. we expect their responses to be internally consistent. 
A statistical quantity, Cronbach’s alpha, is often used to assess the degree 
of internal consistency.

Cronbach’s alpha3,4 is calculated as an average of all correlations among 
the different questions in the scale. It can be interpreted as follows:

Alpha lies between 0 and 1• 
Values are usually expected to be above 0.7 and below 0.9• 
Alpha below 0.7 broadly indicates poor internal consistency• 
Alpha above 0.9 suggests that the items are very similar and perhaps • 
fewer items could be used to obtain the same overall information

Note that high internal consistency is not always expected – some ques-
tionnaires, such as the General Health Questionnaire (GHQ),5 contain 
a number of different health questions which might not necessarily be 
answered in a similar way by the same individuals, such as the questions 
on somatic symptoms and questions on depression.

References
1 Streiner DL, Norman GR. Health measurement scales: a practical guide to their development and 

use. 3rd ed. Oxford: Oxford University Press, 2003.
2 Bowling A. Research methods in health: investigating health and health services. 2nd ed. 

Buckingham: Open University Press, 2002.
3 Cronbach LJ. Coeffi cient alpha and the internal structure of tests. Psychometrika 1951; 
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4 Bland JM, Altman DG. Statistics notes: Cronbach’s alpha. BMJ 1997; 314(7080):572.
5 Goldberg DP, Hillier VF. A scaled version of the General Health Questionnaire. Psychol Med 

1979; 9(1):139–45.
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Measuring reliability
Continuous data
Repeatability both within individuals and between observers can be quan-
tifi ed in several different ways. In many medical studies the actual size 
of the differences between repeated measurements is of interest and so 
the Bland–Altman limits of agreement1 gives a useful summary of this 
(b Bland–Altman method to measure agreement, p. 360). If a relative 
summary is of interest then the coeffi cient of variation (standard devia-
tion of differences divided by the mean) may be helpful, especially if the 
standard deviation is proportional to the mean (Bland, Chapter 152).

An intraclass correlation coeffi cient (Bland, Chapter 152) is also 
sometimes used. This is a dimensionless quantity that can be useful to 
compare the repeatability of several measures, but the drawback is that 
gives no indication of absolute differences.

Categorical data
To assess the level of agreement for data that fall into categories, Cohen’s 
kappa is used (see b Kappa for inter-rater agreement, p. 354).

Empirical validity
There is empirical validity when the scale measures the trait, behaviour, or 
symptom that it sets out to measure. The two types of empirical validity 
usually considered are outlined below.

Convergent/criterion/concurrent validity
This can be tested by comparing it with another similar scale, where one 
exists, to see if both give a similar result. For example in developing a 
shortened version of an existing but longer questionnaire it is important 
to ensure that the short version gives comparable results with the longer 
version.

Construct validity
To assess construct validity where there are no similar scales to compare 
with, the researchers apply a series of tests where the answer is known to 
check that the scale is behaving as expected.
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Examples: testing validity

Testing concurrent validity
Researchers wanted to develop an inexpensive questionnaire that 
parents could fi ll out to assess the cognitive development of their chil-
dren. This questionnaire was designed to replace a lengthy examination 
by a paediatrician or psychologist (Bayley Mental Development Index, 
MDI) in a large study where individual assessment was impracticable.

Both methods were compared in a test sample of children: the new 
questionnaire was given to parents, and in addition and independently, a 
full assessment was carried out by a trained psychologist.

When the two assessments were compared they gave suffi ciently 
similar results for the parental questionnaire to be used in the large 
study.3

Showing construct validity
In developing a new questionnaire scale to measure respiratory symp-
toms we would expect that patients from a chronic obstructive pul-
monary disease (COPD) clinic would score higher than patients from a 
fracture clinic, and that patients’ scores would change before and after 
exercise etc.

These comparisons show that the scale is working as expected and so 
has construct validity.

References
1 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of 

clinical measurement. Lancet 1986; i(8476):307–10.
2 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
3 Johnson S, Marlow N, Wolke D, Davidson L, Marston L, O’Hare A et al. Validation of a parent 

report measure of cognitive development in very preterm infants. Dev Med Child Neurol 2004; 
46(6):389–97.
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Questionnaire measurement scales
Likert scales
Likert scales are widely used to record the level of agreement or disagree-
ment with a particular statement. They are discrete scales where respond-
ents have to tick one of a number of replies to describe their degree of 
agreement with a statement. Each alternative reply is a verbal label. For 
example:

I can get an appointment with my GP when I want it:
Strongly disagree• 
Disagree• 
Neither agree nor disagree• 
Agree• 
Strongly agree• 

Likert scales are always symmetrical. They may contain an odd number 
of choices, fi ve, as above, allowing the neutral option ‘neither agree nor 
disagree’. Likert scales can also contain an even number of choices, thus 
without a neutral option which forces the respondent to choose to agree 
or disagree. For example:

GPs should provide appointments outside normal working hours:
Strongly agree• 
Agree• 
Disagree• 
Strongly disagree• 

The choice of verbal label varies; for example the middle category ‘neither 
agree nor disagree’ is sometime expressed as ‘undecided’. The Likert scale 
has been extended to apply to other situations, for example response to 
pain medication or patient satisfaction:

How has your pain been since you started this drug?
Worse• 
No change• 
Better• 

How satisfi ed were you with your last clinic visit?
Very dissatisfi ed• 
Fairly dissatisfi ed• 
Neither dissatisfi ed nor satisfi ed• 
Fairly satisfi ed• 
Very satisfi ed• 
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Scoring and statistical analysis of Likert scale data
The key characteristic of Likert scales is that the scale is symmetrical. If 
the scale was not symmetrical, there could be bias since respondents may 
be led to give replies in one particular direction.

Likert scales have categories which are conceptually evenly spaced. This 
leads onto how we code and analyse data from these scales. Likert scales 
are usually coded symmetrically, e.g.:

Strongly disagree  = –2• 
Disagree  = –1• 
Undecided  = 0• 
Agree   = +1• 
Strongly agree  = +2• 

0 Care is needed when analysing Likert scale data even though a numer-
ical code is assigned to the responses, since the data are ordinal and 
discrete. Hence an average may be misleading and so a median, or the 
proportion in different categories, may be used as a summary measure. 
It is quite common to collapse Likert scales into two or three categories 
such as agree versus disagree, but this has the disadvantage that data are 
discarded.

Where there are responses to several Likert questions, the responses 
are sometimes summed to give an overall score. Where this overall score 
has a wide range, then it may be reasonable to treat it as a continuous 
variable and calculate means etc., for summary and for analysis. This 
happens with many standard questionnaires, such as the General Health 
Questionnaire (GHQ28), where seven Likert questions in each of four 
sub-groups are summed to give an overall score.

Other response scales
It is not always appropriate to record replies on a symmetrical scale. For 
example when recording pain it would be appropriate to use the following 
categories:

No pain• 
Mild pain• 
Moderate pain• 
Severe pain• 

These may be coded 0, 1, 2, 3 and the same principles apply for data 
summary and analysis as for Likert scale data, in that the data are ordinal 
and so cannot be analysed as if they were continuous.
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Visual analogue scales
Introduction
A visual analogue scale (VAS) is used to assess intensity of symptoms, 
pain, quality of life, etc. A VAS consists of a horizontal line of a given 
length, usually 100 mm (10 cm) with verbal labels (‘anchors’) at each end 
defi ning the extremes, for example when assessing pain: 0= ‘no pain’ and 
100= ‘worst possible pain’ (Fig 2.2). Subjects mark the place along the line 
that best describes their response.

The length of the line to the subject’s mark is used as their VAS score. 
Since it is a measurement, VAS scores can be treated like continuous data, 
although the distribution may be skewed.

Advantages of VAS
It provides continuous data, thus means and standard deviations can be • 
calculated and tests based on the Normal distribution are possible
Statistical power is greater than for Likert scales and other categorical • 
rating scales and so it is possible to detect equivalent differences with 
smaller samples

Disadvantages of VAS
The VAS score data are not true measurements in that they represent • 
a subjective assessment. For example, when grading pain, what one 
patient may grade as ‘7’ may be called ‘4’ by another. Hence the clinical 
interpretation of a specifi c value is hard to defi ne, although attempts 
have been made to do this in the pain fi eld by comparison with other 
data1

VAS scores are often skewed and so some transformation of the data • 
may be needed before analysis. If there are zeros, these cannot easily 
be transformed (b Transforming data, p. 330)

0 Other points about using VAS scores
The length of the line needs to be carefully measured for accuracy• 
Beware when photocopying forms with VAS since copying may distort • 
the length of the line and introduce bias

Numerical rating scale
This is a Likert scale that behaves much like a VAS and is sometimes used 
as if it was a VAS. It consists of a numerical scale like a VAS, but with 
verbal descriptors at the ends and the numbers marked along the line, and 
sometimes with additional verbal descriptors alongside them to guide the 
respondents. Numerical rating scale (NRS) data are therefore discrete, 
for example, consisting of the possible responses: 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10.

Although only integer values are possible, NRS data are often treated 
as if they are continuous measurements. Researchers report summary 
statistics in terms of means and standard deviations, which seems 
reasonable as long as most if not all of the of the scale is used across the 
sample.



99VISUAL ANALOGUE SCALES

Choice of scale – categorical scale or VAS
Where it is feasible to use a VAS, it is preferable as it provides greater 
statistical power than a categorical scale, especially when the categorical 
scale is dichotomized.

Many studies in the pain fi eld use several tools to assess pain and so 
have VAS as well as categorical scales. A diffi culty can arise if statistical 
signifi cance is found with the VAS but not with the categorical scale data.

A sensible approach is to use a VAS score as the primary outcome and 
the desired categorical scales as secondary outcomes.

- VAS scales are usually 10 cm long

- Patients are asked to indicate on the line where the pain is in

 relation to the two extremes

- The VAS score is measured from the left-hand end to the mark 

No

pain

Worst

possible

pain

Fig. 2.2 Example of a VAS scale.

Reference
1 Turk DC, Dworkin RH, McDermott MP, Bellamy N, Burke LB, Chandler JM et al. Analyzing 
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on Methods, Measurement, and Pain Assessment in Clinical Trials. Pain 2008; 139(3):485–93.
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Handling data: what steps 
are important

Introduction
Correct handling of data is essential to produce valid and reliable statistics. 
In this chapter we discuss different methods of data entry and manipula-
tion of datasets in computer packages. The importance of checking for 
errors in the data is highlighted with suggestions how to do this. Finally 
the role of data monitoring committees in research trials is discussed, 
along with the implications of ending trials early. Examples are provided 
throughout the chapter.
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Data entry
Introduction
Data from research studies need to be coded before data are entered 
into a computer for statistical analysis so that all the data are numerical. 
This means that qualitative data, for example, data that require a ‘yes’ or 
‘no’ reply, have to be converted to a number such as 1 for ‘yes’ and 0 for 
‘no’ (see b Form fi lling and coding, p. 78).

2 It is strongly recommended that a unique numerical identifi er is 
given to each subject, even if the research is conducted anonymously. 
This allows the original data collection forms and the electronic version 
to be matched if any queries arise later on. The identifi er may be chosen 
so that it indicates particular sub-groups of subjects. For example, in a 
three-centre study with fewer than 100 subjects per centre, subjects could 
be numbered 101–199, 201–299, and 301–399 so that they can be easily 
identifi ed or selected at a later stage.

Reducing errors
Data entry screens can be set up within some statistical or data-handling 
programs to mirror the data entry form and so have appropriate skips 
and valid ranges built in to reduce errors when data are transferred to 
computer.

Even with a data entry screen with skips and range checks, errors are 
possible. This can be further reduced by double-checking all data entered, 
either by entering the data twice and comparing, ‘double-entry’, or 
by hand-checking. This level of checking may not be feasible for a large 
dataset and in such cases it is recommended that a minimum sample of 
10% is checked.

Format for data entry
Computerized datasets are often stored in a spreadsheet format with 
rows and columns of data. For most statistical analysis it is best to enter 
the data so that each row represents a different subject and each column 
a different variable. If possible, discuss this in advance with the person 
who will be analysing the data to make sure the format is suitable, and to 
avoid the need for data manipulation later on, which is time-consuming 
and can introduce errors.

2 The following types of data need to be entered in particular ways 
depending on the planned analysis and statistical program to be used, 
making it particularly worthwhile to allow time to talk to the data 
analyst/statistician beforehand:

Dates• 
Repeated measures of the same variable in individuals• 
Data which are in text format or include letters, such as a hospital • 
number or blood group
Variables which are summaries of other variables, such as mean blood • 
pressure over a period of time, or maximum peak fl ow rate as the best 
of three attempts
Composite data, such as hours and minutes – if in doubt record hours • 
and minutes as two separate variables
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Data entry (continued)
Data entry example

Table 3.1 Portion of a spreadsheet with different types of data from 
a neonatal study

idnum sex gestation gestdays bweight smoking apgar1

1 1 25+5 180 0.884 0 3

2 1 30+2 212 1.26 0 9

3 2 32+0 224 1.558 1 9

4 2 30+5 215 1.5 0 9

5 1 30+4 214 1.158 0 6

The fi rst row of Table 3.1 gives the variable names and each of the • 
subsequent fi ve rows give the data for fi ve subjects
Each column represents one variable• 
idnum•  is the unique subject identifi er
sex • denotes the sex of the baby and has two possible values, 1 and 2. 
To interpret the data we need to know the coding, i.e. to know that in 
this case, 1=male, 2=female
gestation • is the gestational age of the baby and is recorded in 
‘weeks + days’. This format is commonly used for descriptive purposes 
but is not suitable for data analysis
gestdays • is the gestational age in whole days and is suitable for data 
analysis
bweight • is the baby’s birthweight in kg
smoking • is the smoking status of the mother and is recorded as 0/1 to 
indicate no/yes
apgar1 • is the Apgar score at 1 minute and can take any integer value 
between 0 and 10
0•  Note that the variable names do not contain any gaps. This 
allows them to transfer directly into a statistical program

Notes
If any data were missing, these could be indicated by a blank cell or • 
preferably by a specifi c code such as a dot (.)
It is important to document the coding scheme for categorical variables • 
such as sex where it will not be obviously what the values mean
The explanatory list above would form the basis of a • coding sheet that 
provides a formal record of the codes used for each of the variables 
collected in the study
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Summary tips for data entry into spreadsheets

Liaise with analyst beforehand• 
Use one row per subject• 
Use one column per variable• 
Don’t leave gaps in the spreadsheet or insert comments amongst • 
data – put any comments at the beginning or at the end
Wherever possible avoid using non-numerical data in the cells• 
Use a dot rather than a blank space to indicate any missing data • 
unless there are specifi c codes for different types of missing data
Keep a formal record of the coding used for each variable in the • 
study
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Forms that can be automatically 
scanned for data entry
Introduction
Specialized software programs such as Teleform are available for pre-
paring forms which can be either fi lled in online or fi lled out on paper and 
then scanned automatically into a computer program (see b Chapter 5, 
p. 155). A scanning operator is needed to oversee the process and 
respond to any queries that the software identifi es when it cannot scan 
a particular fi eld.

This form of data capture is increasingly used and has many advantages 
but some potential disadvantages.

Advantages
Saves considerable time normally needed for data entry and checking• 
Ideal for questions that require ‘tick box’ replies• 
Data capture is accurate since it is automatic, unless responses are • 
hand-written (see Disadvantages)

Disadvantages
Specialized software has to be purchased• 
Forms need to be designed and set up using the software, and the user • 
needs to be familiar with the software
Potentially less fl exible for studies with non-tick box questions, i.e. • 
open responses
Hand-written numbers need to be written carefully or they can be mis-• 
scanned, e.g. handwritten 1s and 7s can look similar so some checking 
may be needed

The example in Figure 3.1 shows one page from a longer data collection 
form used in a neonatal study. This section of the form (and the form 
in general), contained both ‘tick box’ questions and ‘free-style’ text 
questions.
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Example of a questionnaire that is designed to be scanned
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Fig. 3.1 Data collection form designed for computer scanning.
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Variable names and labels
Variable names
Variable names may need to be less than nine characters. It is helpful to 
use intuitive names such as ‘bweight’ for birthweight to make data analysis 
and interpretation of results easier. Sometimes statistical programs auto-
matically assign variables generic names such as ‘var1’ ‘var2’, etc. These 
should be changed to something meaningful as the data are entered.

It can be tricky to fi nd unique names for each variable where multiple 
measurements are taken on the same variable. Prefi xes or suffi xes can 
be used to denote such repeated measurements. If there are several 
repeated variables, use the same ‘scheme’ for all to avoid confusion. For 
example if a suffi x is used to indicate the number of the measurement, 1, 
2, 3, 4 …, for example: bpd7, bpd14, etc, or d7bp, d14bp to denote blood 
pressure (BP) at 7 days and 14 days.

0 Try to avoid mixing suffi xes and prefi xes as it can cause confusion. 
For example, if we use a suffi x for BP, such as bpd7 and a prefi x for heart 
rate such as d7hr it may cause confusion later on, especially if there are a 
lot of variables and the analyst is searching for a particular one.

Variable labels
When using a statistical package, it is usually possible to give labels to the 
variables in addition to the short name, particularly when the nature of 
the variable is not obvious from the name itself. Although labelling takes 
time, it is well worth the time invested to allow you to quickly and accu-
rately identify particular variables in the dataset itself and to be clear what 
variables have been used when reviewing output results. For example, 
smoking could be labelled ‘Mother’s smoking habit during pregnancy’.

Value labels
Similarly, when using a statistical program, it is helpful to label the values 
of categorical variables such smoking ‘0=no’ and ‘1=yes’. It is even more 
important when the variable has many possible values, and when the 
actual codes have no intuitive meaning. Here we give an example of some 
results from the statistical program Stata, both unlabelled and labelled to 
show how labelling makes it much easier to read the output.
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Example: statistical analysis results (i) without labelling and 
(ii) with labelling
The variable being tabulated, ‘mastatus’, is the marital status in a study of 
pregnant women. There were fi ve possible responses, which were coded 
1, 2, 3, 4, and 5. The labelling of values is particularly needed here as the 
codes have no intrinsic meaning since the variable is qualitative.

Unlabelled

Mastatus Freq. Percent Cum.

1 1,318  79.93  79.93

2  270  16.37  96.30

3  31  1.88  98.18

4  25  1.52  99.70

5   5  0.30 100.00

Total 1,649 100.00

Labelled

Marital 
status

Freq. Percent Cum.

Married 1,318  79.93  79.93

Single 270  16.37  96.30

Divorced 31  1.88  98.18

Separated 25  1.52  99.70

Widowed 5  0.30 100.00

Total 1,649 100.00
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Joining datasets
Introduction
When data are entered onto a computer at different times it may be nec-
essary to join datasets together.

2 It is important to avoid over-writing a current dataset with a new 
updated version without keeping the old version as a separate fi le, in case 
the original fi le is needed for some reason, such as the computing process 
crashes and the fi le being updated is lost.

Appending datasets: adding new cases
For the joining process to work, the two datasets must use exactly the 
same variable names for the same variables and the same coding. Any 
spelling mistakes will prevent a successful joining. For example if one 
dataset used the variable name ‘sex’ to denote male/female and the other 
used the variable name ’gender’, then when the datasets are merged, 
there will be two variables denoting male/female, and ‘sex’ will denote 
male/female for some subjects and ‘gender’ will denote male/female for 
the rest. Inconsistencies such as these can easily happen but will obviously 
cause problems when the data are analysed.

It is worth checking that the joining has worked as expected by checking 
that the total number of observations in the updated fi le is the sum of the 
two previous fi les, and that the total number of variables is unchanged. If 
there are some different variables in the two datasets to be appended, 
perhaps because data collection was revised part-way through, then it is 
also worth checking how this has been dealt with to make sure nothing 
has gone wrong.

Merging datasets: adding new variables
When new data are collected on the same individuals at a later stage 
(e.g. at a 1-year follow-up appointment), it may be necessary to merge 
datasets. In order to do this the unique subject identifi er must be used 
to identify the records that must be matched. For the merge to work, all 
variable names in the two datasets must be different except for the unique 
identifi er. For example if weight is recorded in each of the two datasets, 
one measured at time 1 and the other at time 2, the two variables must 
have different names, such as ‘weight1’ and ‘weight2’. It is important to 
check how the merge has worked in terms of how many subjects have 
complete data and how many have data at one of the two points only.

As a further check, it may be useful to have another common variable 
that will not change over time in both datasets in addition to the study ID, 
such as the date of birth. This would need to be named, say DOB1 and 
DOB2 and then after the merge was done, a check could be made that 
DOB1=DOB2 for all individuals.

Master dataset
It is important to ensure that a unique copy of the current fi le, the ‘master 
copy’, is stored at all times. Where the study involves more than one 
investigator, everyone needs to know who has responsibility for this. It 
is also important to avoid having two people revising the same fi le at the 
same time.
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Careful data management and good documentation are important when 
managing research study datasets, especially large ones, so that there is an 
audit trail of changes and additions that have been made.

0 Using a spreadsheet to join datasets
Spreadsheets are useful for entering and storing data. However, care 
should be taken when cutting and pasting different datasets to avoid mis-
alignment of data. For example, datasets can be merged within a spread-
sheet by inserting the extra data in columns to the right of the existing 
data. However, this assumes that the two datasets have exactly the same 
number of subjects and that the two datasets have the same ordering 
of subjects. Similarly when appending by adding a new dataset as extra 
rows in a spreadsheet, the columns need to be in the same order in both 
original datasets. In addition, sorting data in spreadsheets can go awry 
if all cells are not highlighted and then only some cells are sorted, leading 
to mis-matched data and hence nonsense. b Data checking examples, 
p. 118, shows an example of where spreadsheet manipulation went wrong.

Summary: joining datasets

Appending• : joining two datasets (or more) containing the same 
variables in different subjects
Merging• : joining two datasets containing the same subjects but 
different variables
Check carefully that all data joining has worked as expected• 
Keep all previous copies of datasets as back-up• 
Keep a separate back-up of the current version in a different place • 
from the main copy, e.g. on a portable storage device. Avoid keeping 
the main copy and the back-up together, such as in different fi les on 
the same machine, in case of loss or damage. Keep separate copies.
Document names and the dates when data fi les were created• 
Ensure only one person is working on the dataset at any one time• 
Because joining or sorting datasets can quite easily and unknowingly • 
go wrong, it is best not to join or sort datasets using a 
spreadsheet
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Joining datasets: examples
Appending datasets (Fig. 3.2)

Two datasets are joined• 
Both have the • same four variables, num, birthwt, gestation, headcirc 
but the two datasets each contain fi ve different cases numbered 
01–05 and 06–10
The resulting dataset has four variables and 10 cases• 

num birthwt gestation headcirc

num birthwt gestation headcirc

num birthwt gestation headcirc

01 1100 27.43 26.00

02 768 27.00

03 1097 28.43

04 1046 28.43 26.30

05 965 28.43 25.20

PLUS

06 990 26.29

07 910 26.71 25.50

08 536 28.57 22.40

09 1050 28.71 25.50

10 740 27.29 27.00

GIVES

01 1100 27.43 26.00

02 768 27.00

03 1097 28.43

04 1046 28.43 26.30

05 965 28.43 25.20

06 990 26.29

07 910 26.71 25.50

08 536 28.57 22.40

09 1050 28.71 25.50

10 740 27.29 27.00

Fig. 3.2 Appending datasets.
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Merging datasets (Fig. 3.3)
Two datasets are joined• 
Both have the • same 10 cases, numbered 01–10 but different 
variables: num, birthwt, gestation, headcirc 
num, headcirc2, weight2
‘num’ is common to both datasets and is used for matching
The datasets are joined side by side so that the cases, denoted by • 
‘num’, match
The resulting dataset has six variables and 10 cases• 

num birthwt gestation headcirc num headcirc2 weight2

01 1100 27.43 26.00 01 47.1 11.70

02 768 27.00 02 48.1 11.03

03 1097 28.43 03 49.0 15.84

04 1046 28.43 26.30 04 50.0 13.82

05 965 28.43 25.20 PLUS 05 48.0 13.11

06 990 26.29 06 48.0 14.00

07 910 26.71 25.50 07 47.2 11.40

08 536 28.57 22.40 08 47.5 9.16

09 1050 28.71 25.50 09 48.0 12.96

10 740 27.29 27.00 10 48.0 10.70

GIVES

num birthwt gestation headcirc headcirc2 weight2 

01 1100 27.43 26.00 47.1 11.70

02 768 27.00 48.1 11.03

03 1097 28.43 49.0 15.84

04 1046 28.43 26.30 50.0 13.82

05 965 28.43 25.20 48.0 13.11

06 990 26.29 48.0 14.00

07 910 26.71 25.50 47.2 11.40

08 536 28.57 22.40 47.5 9.16

09 1050 28.71 25.50 48.0 12.96

10 740 27.29 27.00 48.0 10.70

Fig. 3.3 Merging datasets.
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Storing and transporting data
Introduction
The notes below summarize the key points to consider when storing and 
transporting data in paper and electronic forms.

Paper forms
These should be fi le systematically to allow easy access at later date• 
It is essential to ensure data are stored securely to comply with data • 
protection requirements
It may be appropriate to store identifying details such as names and • 
addresses separately from the data forms to protect confi dentiality, 
particularly when transporting data
It is worth considering keeping a copy of forms in one location if they • 
are being transported somewhere else in case they get damaged or lost
If the forms or data are particularly valuable, then a copy should always • 
be kept in a different place in case of damage or loss

Electronic fi les
Identifying details such as names and addresses should always be • 
removed when transporting electronic fi les by post (e.g. when mailing a 
CD), or when sending over a computer network
Data fi les should be password protected and if possible encrypted • 
when transporting by post, or over a computer network
It is essential to keep more than one copy of the data in two separate • 
locations in case of computer failure or loss. Back-ups may be created 
automatically, for example if an organization backs up all network fi les 
daily. It is therefore worth checking on the policy and practice in the 
institution where the data are stored
It may be useful to use fi le names that show the version or date where • 
fi les are updated during the course of a study, e.g. ‘eczema data v1’
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Data checking and errors
Data entry checks
If data have been manually entered, i.e. not using an automatic data 
capture program, then some checking for errors is needed.

Check early• : Where possible, it is important do some checks early 
on to leave time for addressing problems while the study is still in 
progress. Examples of problems that may be uncovered early and 
addressed include the following: one research assistant has illegible 
writing, or tends to miss out a particular question, or a particular data 
entry clerk makes a lot of mistakes and needs some further training. If 
checking is left till the end of the study, it may be too late to remedy 
these problems.
Check a random sample•  of forms for data entry accuracy. If this 
reveals problems then further checking may be needed
Key variables• : If feasible, consider checking data entry forms for key 
variables, e.g. the primary outcome
Range checks• : Unless the data entry scheme has in-built range checks, 
tabulate all data to ensure there are no invalid values
Consistency• : A further check of accuracy is to make sure responses 
are consistent with each other within subjects, e.g. check for any 
impossible or unlikely combinations of responses such as a male with a 
pregnancy, or for outliers, such as one recording of blood pressure in a 
subject is very different from all of the others for the same subject
Original forms:•  All original data forms should be kept. For studies 
involving patient data there may be specifi c requirements which 
determine how long the data should be kept. For example, in studies 
in children, data forms may need to be kept at least until the child 
has reached adult age, or longer if the study is ongoing. Any errors 
or queries identifi ed will usually need to be checked back against the 
original form to identify the source of the error, i.e. data reporting or 
data entry.
Missing data• : Check where feasible that any gaps are true gaps and 
not missed data entry
Snowballing errors• : Sometimes fi nding one error may lead to others 
being uncovered. For example, if a spreadsheet was used for data entry 
and one entry was missed, all following entries may be in the wrong 
columns. Hence, always consider if the discovery of one error may 
imply that there are others.
Digit preference• : This is where a particular digit is more common 
than others and may indicate inaccurate reporting (e.g. people 
sometimes report to the nearest 10 below their true age). It may also 
suggest there has been mis-scanning for scanned handwritten forms. 
Digit preference may also simply refl ect the accuracy of measurement 
such as blood pressure being recorded to the nearest 5 or 10 mmHg. 
Frequency tabulations will show if there is digit preference.
Scatter plots• : These can be used to identify values which are 
inconsistent within an individual, such as in a pregnancy study where 
it would be unexpected to have a pre-pregnant weight that was more 
than the full-term pregnancy weight. A scatter plot would show this 
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individual as being far away from the rest of the subjects and further 
checks could be made to see if these values represent an error.
Statistical analysis• : Some data entry and/or data recording problems 
only come to light when the data are analysed so there may be a need 
to go back to the original forms later on

Correcting errors
It is important to check the original form wherever possible to identify • 
the source of any potential data error, such as, to determine if the 
error is due to a data entry error or an invalid value being recorded on 
the original form
It is important not to make assumptions or guesses where data values • 
look unusual or are missing, as this will introduce bias
An outlying value should not be deleted simply because it is unusual. • 
Where possible, similar data should be checked in the same individual 
to see if it is consistent. If a truly impossible value is found, it is 
important to try to locate the correct value. If this is not possible then 
set that value to ‘missing’.
It is important to keep a record of any changes that are made to the • 
dataset and keep dated copies of datasets as changes are made, so that 
it is obvious which is the latest version. Don’t overwrite datasets with 
edited versions as older versions may be needed later on.
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Data checking: examples
Checking data using the frequency distribution

Table 3.2 Frequency distribution of the number of days a baby was 
ventilated (‘DOV’)in 78 babies

DOV Freq. Percent Cum.

0

1

2

3

4

5

6

7

8

9

11

14

15

16

19

22

29

30

38

40

41

43

46

49

53

68

161

24

 6

 6

 6

 2

 4

 3

 2

 1

 1

 2

 1

 1

 2

 2

 1

 1

 1

 2

 2

 2

 1

 1

 1

 1

 1

 1

 30.77

 7.69

 7.69

 7.69

 2.56

 5.13

 3.85

 2.56

 1.28

 1.28

 2.56

 1.28

 1.28

 2.56

 2.56

 1.28

 1.28

 1.28

 2.56

 2.56

 2.56

 1.28

 1.28

 1.28

 1.28

 1.28

 1.28

 30.77

 38.46

 46.15

 53.85

 56.41

 61.54

 65.38

 67.95

 69.23

 70.51

 73.08

 74.36

 75.64

 78.21

 80.77

 82.05

 83.33

 84.62

 87.18

 89.74

 92.31

 93.59

 94.87

 96.15

 97.44

 98.72

100.00

Total 78 100.00

Table 3.2 shows that the highest value for ‘DOV’, 161 was much greater 
than the other values and was therefore checked to see if it was an error. 
It was found to be correct.
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Checking for consistency
Table 3.3 shows a portion of data in a study measuring respiratory parame-
ters at two time points in a group of babies: tidal volume (tv1 and tv2) and 
Hering–Breuer infl ation refl ex (hb1 and hb2). From looking at the data, 
it was clear that the values of tv2 and hb2 for baby number 2 (shaded) 
were markedly different to the same baby’s values for tv1 and hb1, as well 
as being different to the values of tv2 and hb2 for the other babies in the 
study group. (Not all data are shown here.)

It emerged that two columns had been accidentally transposed to cause 
this error. This was easily corrected for statistical analysis.

Table 3.3 Part of a dataset from a study measuring respiratory 
parameters at two time points in infants

subject tv1 hb1 tv2 hb2

1 5.86  68.94  4.85 186.54

1 5.04  27.98  5.80  75.08

1 6.09  8.22  4.64 132.56

1 6.08  76.36  4.70  60.85

1 4.37 367.56  4.78  84.09

2 7.45  68.00 62.20  7.53

2 8.78 103.27 42.43  6.01

2 9.73  58.84 89.87  5.13

2 7.66  51.76

3 5.69  43.68  6.77 155.56

3 5.91  31.67  6.87  39.10

3 9.10  52.91  7.09 165.40

3 5.83  22.86  6.02  27.91

3 6.40 115.19  5.01  98.11

3 7.27  34.28  6.81 156.06

3 3.80  65.02
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Data checking: examples (continued)
Checking using a histogram
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Fig. 3.4 Histogram of weight standard deviation score at 2 years in 374 infants.

Plots can be useful for checking larger datasets. Figure 3.4 shows the dis-
tribution of weight standard deviation score. The value at the very right-
hand end of the distribution is some way from the rest of the distribution 
and is more than 4 standard deviations above the mean. This is very high 
and needed to be checked. It was found to be correct.

Checking using a scatter plot
Figure 3.5 illustrates how a scatter plot can also check for inconsistencies 
in variables that are related to each other. The data are weight standard 
deviation score and height standard deviation score (SDS) in infants and 
these would be expected to be closely correlated. The outlying value for 
weight SDS is clear as it is well away from the other points but as stated 
above, it was found to be correct.

This example illustrates the usefulness of using a scatter plot to check 
for outlying values but also provide a warning that some apparently 
outlying values are in fact correct.
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Fig. 3.5 Scatter plot of weight and height standard deviation score at 2 years in 374 
infants.
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Formal data monitoring
Randomized clinical trials
Studies testing new treatments in patients increasingly convene a formal 
data monitoring committee (DMC), which is independent of the trial 
steering group and has a specifi c remit relating to safety and adverse 
events, and the continuation or early stopping of the trial.

Function of the DMC
The DMC usually takes responsibility for the following items, as appro-
priate to the actual trial in question:

Monitoring the safety of the treatment under trial in terms of minor • 
and major adverse events
Checking for any evidence of clear superiority or inferiority of the • 
treatments
Monitoring recruitment rates• 
Monitoring the balance in key prognostic variables to check the • 
integrity of the randomization process
Monitoring adherence to trial protocol(s)• 
Monitoring data collection and trial conduct• 
Monitoring the data accrual• 
Monitoring planned sample size calculations• 
Assessing the importance of any new external evidence to the trial• 
The DMC normally reports directly to the trial steering group and can 

make recommendations regarding:
Continuation of the trial in the light of observed adverse events• 
Continuation of the trial if clear superiority or inferiority is • 
demonstrated
Continuation of the trial if a fi rm outcome is very unlikely given the • 
data so far
Issues relating to the data collection process or trial conduct in as • 
much as it affects safety or the assessment of effi cacy

Constitution of the DMC
The DMC usually comprises a small group of experts including at least 
one clinician with expertise in the specialty of the trial and at least one 
statistician. Typically a DMC will have two or three clinicians and a stat-
istician, and one of these will be the chair of the group. The DMC meet-
ings are attended by the trial statistician and, by agreement, also by the 
principal investigator.

Meetings
The DMC usually meets at the outset of the trial and then at pre-specifi ed 
intervals during it, such as once a year for a lengthy trial. At the meetings 
the DMC discusses data provided by the trial statistician. Sometimes an 
analysis of the primary outcome is conducted at pre-determined points to 
see if there is any reason to stop the trial. There is debate as to whether 
interim trial data should be provided with the treatment allocation 
revealed or whether they are presented ‘blind’ as, for example, ‘group A’ 
and ‘group B’. In some trials the DMC need to know which group is which 
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to be able to determine the clinical importance of particular adverse 
events. In other settings the DMC may agree that it does not need to have 
unblinded data. In all cases, it is important that the trial team, including the 
principal investigator, remains blind to the allocations while the trial is in 
progress. The exception to this is the trial statistician who conducts the 
data analysis and may need to be unblinded. The UK Health Technology 
Assessment document gives a fuller discussion of the issues.1

DMC charter
It is helpful for the DMC to draw up a charter at the outset to set out 
its precise role and function and to specify how the DMC will operate. 
The DAMOCLES guidelines for DMCs2 provide helpful guidance on these 
issues and a template for a charter.

Data quality issues
In monitoring the data collection and inspecting baseline and interim data, 
the DMC can highlight potential data quality problems such as the com-
pleteness of the data indicated by totals less than the maximum number 
of subjects.

For example, in a cancer therapy trial, the DMC noted missing data 
on lung function tests at baseline, which affected their ability to monitor 
adverse effects of treatment on the patients’ lung functions after 
treatment.

Statistical analysis plan
The trial steering group in conjunction with the sponsor is responsible for 
designing the trial and therefore the statistical aspects, but the DMC will 
often review this document before the trial starts.

References
1 Grant AM, Altman DG, Babiker AB, Campbell MK, Clemens FJ, Darbyshire JH et al. Issues in data 

monitoring and interim analysis of trials. Health Technol Assess 2005; 9(7):1-iv.
2 DAMOCLES Study group. A proposed charter for clinical trial data monitoring committees: 

helping them to do their job well. Lancet 2005; 365(9460):711–22.
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Statistical issues in data monitoring
Early stopping
The DMC may recommend that the trial is completely or partially stopped 
at an interim point for any of the following reasons:

Either the treatment or control under investigation shows clear benefi t • 
for the primary outcome
Safety concerns have been observed with one or more secondary • 
outcomes
There is only a small chance of the trial going on to show benefi t • 
(futility)
There is evidence for clear harm in either one arm of the trial or in a • 
sub-group
There is external evidence that changes the original assumption of • 
equipoise, i.e. no known preference, in treatment effectiveness

Stopping rules
There are several different approaches to determining if and when a trial 
should be stopped. The approaches are a mixture of a fi rm decision rule 
based on the data such as a P value, and judgement, such as a prior belief 
about the effi cacy of the treatment being tested. The main approaches 
used can be summarized as follows:

Group sequential• : A limited number of interim analyses are done at 
pre-set times. For example Pocock’s method uses the same cut-off 
for all interim analyses and the O’Brien–Fleming method uses a more 
conservative cut-off early in the trial which is less conservative as the 
trial continues
Continuous procedures• : These allow inspection of the data any time. 
Examples include the triangular test, the alpha spending approach and 
the repeated confi dence interval method
Likelihood methods• : These are less formal approaches whereby the 
DMC will only recommend that the trial is stopped if there is both 
proof beyond reasonable doubt that one treatment is indicated for all 
or some patients, and the evidence is strong enough to be convincing 
to clinicians (Haybittle–Peto rule)
Bayesian approach• : This is an extension of the likelihood approach 
where the information is supplemented by including belief about the 
treatment effect from information external to the trial itself

There is general consensus that statistical techniques can only be used as a 
guide to the DMC, and that the whole context of the trial must contribute 
to the decision making.

Consequences of early stopping
Trials are only stopped early when it is considered that the evidence for 
either benefi t or harm is overwhelmingly strong. In such cases, the effect 
size will inevitably be larger than anticipated at the outset of the trial in 
order to trigger the early stop.

Hence effect estimates from trials stopped early tend to be more 
extreme than would be the case if these trials had continued to the end, 
and so estimates of the effi cacy or harm of a particular treatment may 
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be exaggerated. This phenomenon has been demonstrated in recent 
reviews.1,2 Work is ongoing to address these challenges, such as that by 
Pocock.3

Sample size
Sometimes it becomes apparent part way through a trial that the assump-
tions made in the original sample size calculations are not correct. For 
example, where the primary outcome is a continuous variable, an estimate 
of the standard deviation (SD) is needed to calculate the required sample 
size. When the data are summarized during the trial, it may become 
apparent that the observed SD is different from that expected. This has 
implications for the statistical power. If the observed SD is smaller than 
expected then it may be reasonable to reduce the sample size but if it is 
bigger then it may be necessary to increase it.

Alternatively, if recruitment is less than planned then the trial steering 
group may ask the DMC if it considers it acceptable to check the summary 
data (all groups together) to allow it to re-do the sample size calculations 
in the light of the observed data and thus determine if the projected 
recruitment will be suffi cient.

Published guidance
The trial steering group will often seek the opinion of the DMC with these 
sorts of statistical issues to get an independent but informed view.

National documents with guidance for data monitoring committees 
have been published by Grant et al.4 and the US Department of Health 
and Human Services.5 A full review of statistical approaches to data 
monitoring with many useful references is given in Appendix I of the UK 
Health Technology Assessment document.4
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Presenting research 
fi ndings

Introduction
The fi ndings of research studies are usually disseminated beyond the 
research team. Research fi ndings can be presented in a variety of written, 
graphical, or oral forms. It is vital that statistics are clearly and accurately 
presented to enable the reader to interpret correctly the research fi nd-
ings. In this chapter we discuss the different formats for disseminating 
research fi ndings, the different sections of a research paper or report, and 
describe the best ways to present statistical results. Examples are given 
throughout.
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Communicating statistics
Introduction
Research fi ndings are usually communicated to people beyond the 
research team for several reasons:

For interim or fi nal review• 
For comparison or amalgamation with other work• 
For dissemination as new evidence • 
It is important that the statistical aspects are communicated clearly and 

accurately. There needs to be suffi cient detail to convey the fi ndings but 
not so much that the key results or issues become clouded. The main 
results presented should match the main aims of the research and/or 
answer the main question or questions posed. This is important even if the 
answer is negative or inconclusive, such as when a new treatment is not 
shown to be effective or no difference between two groups is observed. 

Unplanned sub-group analyses should be clearly signposted as post-hoc 
to avoid over-emphasizing their value. This is important even if the sub-
group results turn out to be more ‘interesting’ that those results relating 
to the primary aim.

Presenting study results 
The data presented and the interpretation should be directly related to • 
the main research question
The interpretation of the data should be methodologically sound and • 
impartial
The conclusions should accurately refl ect the data presented• 

Formats for presenting
Journal article (paper)• 
Thesis or dissertation• 
Report• 
Conference abstract• 

The main features of the statistics included are similar for all types of 
presentation.
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Producing journal articles
Introduction
The most common method of disseminating research fi ndings is through 
journal publications. Most original research projects will result in one or 
more journal ‘publications’. Journal articles are usually quite short, but 
they are not necessarily quick or easy to write.

2 It is important to understand the general format of an article and the 
specifi c statistical issues relating to each section. Although journals have 
their own specifi c requirements for how articles should be presented, 
the general structure is similar for most journals reporting health 
research. The main body of an article usually follows the IMRaD format 
(Introduction, Methods, Results and Discussion), and is accompanied by 
an abstract or summary.

Sections of an article
Abstract • – this is a brief summary of the whole article, usually around 
250–300 words
Introduction•  – this gives the background to the study, including 
information on previous research and why the current study has been 
conducted
Methods•  – this describes how the study was carried out, including 
details of statistical techniques used
Results • – this presents the fi ndings of the study, often including tables 
and/or graphs which display the results
Discussion•  – this brings together the fi ndings of the study and 
puts them in context with other research work, sometimes making 
suggestions for a change in practice or for further research

Statistics in articles
Statistics are included in every section of the paper, with each section 
requiring different information. A summary of which information to 
present in each section is given here. Each section is discussed in more 
detail on the following pages, with examples. Although geared towards 
journal articles, the general principles apply to the presentation of research 
fi ndings in any format, such as reports, dissertations or theses.

Further details on presenting research fi ndings can also be found in 
Presenting medical statistics from proposal to publication by Peacock and 
Kerry, which shows how to present statistics at all stages of a research 
study.1 General guidance on writing journal articles can be found in How 
to write a paper, edited by Hall.2
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Statistical items included in research articles

Introduction:• 
The purpose of the study and hypothesis to be tested• 

Methods:• 
The study design, including the choice and size of sample• 
The data collected, including any specifi c questionnaires or • 
measurements
The statistical methods, including the statistical program used• 

Results:• 
The results in a numerical format and, where relevant, also in • 
graphs

Discussion:• 
A commentary on the results highlighting key fi ndings• 
The interpretation of the fi ndings• 
A discussion of the fi ndings in the light of:• 
° The choice of sample (generalizability)
° The sample size (statistical power, precision of estimates)
Any limitations, such as missing data• 
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Research articles: abstracts
Abstracts may appear to be easy to write since they are very short docu-
ments, limited to perhaps 150, 250, or 500 words and often required to be 
written in a structured format. It is therefore perhaps surprising that they 
are sometimes poorly written, too bland, contain inaccuracies, and/or are 
simply misleading.1 The reasons for poor quality abstracts are complex; 
abstracts are often written at the end of a long process of data collection, 
analysis, and writing up, when time is short and researchers are weary. 
Furthermore, statistical issues such as the over-emphasis of post-hoc 
analyses or sub-group analyses, can lead to an abstract that is not a fair 
representation of the research conducted.

2 If it is summarizing a longer report or paper, then it is important 
that the abstract is consistent with the body of text and that it gives a 
balanced summary of the work. We live in an age where many readers will 
only have time to read the abstract, either because they are fi ltering a large 
body of research to identify what is relevant to them, or simply because 
they are short of time. Also, many journals provide only abstracts free 
of charge online. Hence it is critical that abstracts are well-written, 
accurate and unbiased. Sometimes, sub-group analyses are reported in 
abstracts as if they were the primary analysis. This is misleading, especially 
if the primary analysis is not reported. To maximize its usefulness, a 
summary or abstract should include estimates and confi dence 
intervals for the main fi ndings and not simply present P values.

Key points for presenting the statistics in abstracts 
Report the numbers of subjects and the location of the study where • 
applicable
Don’t just give P values – give some descriptive data as well• 
Give the main outcome with estimates and 95% confi dence intervals • 
where possible, whether the fi nding is statistically signifi cant or not 
Make sure that the data presented in the abstract are consistent with • 
the data in the body of the text 
Don’t report unplanned sub-group analyses in the abstract• 
Report conclusions that are consistent with the data presented• 
Avoid bland conclusions that could be stated without the study being • 
carried out, such as ‘there may be a relationship between …’
Be careful when making speculative statements in the abstract. If the • 
results give rise to a new hypothesis, state this clearly.
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Example of a structured abstract2 
Reproduced from BMJ, Cuthbertson et al, 339, b3723 © 2009 with per-
mission from the BMJ Publishing Group Ltd.

Objectives: To test the hypothesis that nurse led follow-up pro-
grammes are effective and cost effective in improving quality of life after 
discharge from intensive care. 

Design: A pragmatic, non-blinded, multicentre, randomised controlled 
trial. 

Setting: Three UK hospitals (two teaching hospitals and one district 
general hospital). 

Participants: 286 patients aged 18 years or more were recruited after 
discharge from intensive care between September 2006 and October 
2007. 

Intervention: Nurse led intensive care follow-up programmes versus 
standard care. 

Main outcome measure(s): Health related quality of life (measured 
with the SF-36 questionnaire) at 12 months after randomisation. A cost 
effectiveness analysis was also performed. 

Results: 286 patients were recruited and 192 completed one year 
follow-up. At 12 months, there was no evidence of a difference in the 
SF-36 physical component score (mean 42.0 (SD 10.6) v 40.8 (SD 11.9), 
effect size 1.1 (95% CI: –1.9 to 4.2), P=0.46) or the SF-36 mental compo-
nent score (effect size: 0.4 (95% CI: –3.0 to 3.7), P=0.83). There were no 
statistically signifi cant differences in secondary outcomes or subgroup 
analyses. Follow-up programmes were signifi cantly more costly than 
standard care and are unlikely to be considered cost effective. 

Conclusions: A nurse led intensive care follow-up programme showed 
no evidence of being effective or cost effective in improving patients’ 
quality of life in the year after discharge from intensive care. Further 
work should focus on the roles of early physical rehabilitation, delirium, 
cognitive dysfunction, and relatives in recovery from critical illness. 
Intensive care units should review their follow-up programmes in light 
of these results.

Comment on abstract
This abstract includes the number of subjects recruited and followed 
up, the main outcome in each of the two groups and the difference with 
a 95% confi dence interval and P value. These results agreed with those 
presented in the main body of the paper although the number followed 
up to 12 months was not explicitly stated in the paper.
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Research articles: introduction and 
methods sections
Introduction section
The introduction section gives the background to the current study and 
often includes details of previous research work in the subject area. It 
is helpful to understand the statistical methods and fi ndings of other 
research that is referred to, in order to describe previous work fairly and 
accurately. When citing other papers, it is advisable to obtain and read the 
paper referred to, rather than relying on second-hand reports as there is 
always a danger of ‘Chinese whispers’ leading to inaccurate reporting. 

The extract below illustrates the reporting of fi ndings from other 
studies within the introduction section.

Extract from the Introduction of a research paper1

‘Department of Health (DH) statistics show that demand for emer-
gency ambulance services has been increasing steeply in recent years. 
However, little has been published about factors linked to high service 
demand or about variations in demand across the country. Carlisle et al. 
found that the use of general practice and hospital accident and emer-
gency services varied with deprivation, but their study did not examine 
ambulance services and only looked at one city, Nottingham. Wass 
and Zoltie reported that increased use of accident and emergency 
departments is disproportionately high among elderly patients.’

Methods section
The methods section should describe how the study was conducted. 
Ideally this should be in suffi cient detail to enable another researcher to 
replicate the study, however, word limits on research papers often make 
this a diffi cult task. Nevertheless, it is important to include the following:

The setting or area where the study was conducted• 
The date(s) that the study sample was fi rst obtained• 
The subjects included in the study, including any exclusion criteria • 
Note the ‘subjects’ are not always people, but may be an event such as 
an emergency ambulance call (see b Example, p. 135)
The study design (see • b Chapter 1, p. 1)
Details of the measurements used• 
The source of any non-original data• 
The sample size, including a justifi cation (• b Sample size for 
comparative studies, p. 62)
The statistical methods, including any computer software used• 
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Presenting sample size calculations

Example 1: ‘The target sample size of the study was 800 babies. 
Assuming power of 0.9 and two-sided signifi cance level 0.05, this was 
suffi cient to detect a difference of 11 percentage points in the primary 
outcome between treatment groups overall.’

Example 2: ‘With a sample size of 100 infants a difference of 0.56 
standard deviations in pulmonary function could be detected between 
the two groups, with 80% power and 5% (two-sided) signifi cance level.’

Example of a Methods section in a research paper2

‘All emergency 999 calls responded to by the London Ambulance Service 
(LAS) during the same week in 1989, 1996, and 1999 were studied (week 
16: 24–30 April 1989, 29 April–5 May 1996, and 26 April–2 May 1999). 
This week was chosen as having a low probability of extreme weather 
conditions and to avoid school and public holidays, both of which may 
affect the nature and volume of 999 calls. Where there were multiple 
calls relating to the same response, only the fi rst call was included. Data 
for 1989 had to be manually extracted from microfi che copies of the 
original individual records and entered onto a database. Data for 1996 
and 1999 were already held in electronic form, having been taken from 
routine data forms (LA4s) by the LAS Management Information depart-
ment. The following data were retrieved for each call: time and date, 
patient age, and patient sex.

Virtually all calls were made for a single patient, allowing us to 
calculate call rates using the resident population for Greater London. 
A very small proportion of calls (1989: n = 2 (0.03%); 1996: n = 62 
(0.6%); 1999: n = 73 (0.6%)) were for more than one patient. In this 
case only details of the fi rst patient were available. The changes in call 
responses over time were calculated as rate ratios with corresponding 
95% confi dence intervals. The earliest year, 1989, was used as the 
baseline so that changes in 1996 and 1999 were each compared with 
1989. For a small percentage of calls (8% in 1989; 4% in 1996; 7% in 
1999), the ambulance crew had been unable to obtain the patient’s age 
and so simply provided a category—baby, child, adult, elderly. Where 
this occurred we estimated the age to fi t the age distribution of the 
original data. This allowed us to maximise the use of the data available.

Trends in proportions of call responses from 1989 to 1999 were 
investigated using the χ2 test for trend. The relations between call rates 
and the age/sex profi le of the patient were analysed using negative 
binomial regression. All analyses were performed using Stata version 7.

References
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Research articles: results section
The results section gives the fi ndings of the research study and is usually 
the section of the paper which includes the most statistical information.

This section should include the following:
Details of the study population• : including numbers of subjects who 
did not complete the study, or who were excluded from the analysis 
for any reason. Flowcharts are a useful way of presenting these data 
(see Fig. 4.1)
Baseline characteristics for the study population• : if there are two 
or more groups, as in a randomized trial, then baseline data should be 
presented for each group
Main results from statistical analyses• : these are often best 
presented in tables and graphs (b Presenting statistics: tables and 
graphs, p. 146), with main fi ndings presented in the text. See also 
b Presenting statistics: managing computer output, p. 140, and Presenting 
statistics: P values and confi dence intervals, p. 144, for how to present 
numerical data

0 Space limitations for medical journals can sometimes make it diffi cult 
to include all the statistical information that we would ideally like to. 
More recently, online publishing has enabled additional information to be 
made available on journal websites, to supplement the data in the printed 
journal version.

Examples

Example 1: ‘The 20 studies reviewed were all two-parallel-group 
randomized trials, two of which were equivalence trials. Of the 18 
superiority trials, six (33%) reported evidence for a difference between 
groups in the primary outcome. Nineteen papers were fi rst reports of 
trials and one was a follow-up.’

This is an extract describing the study population from a study • 
investigating the quality of abstracts in journal articles.1 Note in this 
example the ‘subjects’ are not patients but journal articles 

Example 2: ‘Between September 2005 and October 2007, we ran-
domly assigned 391 couples to immobilisation in a supine position for 
15 minutes (199 couples; intervention group) or immediate mobilisation 
(192 couples; control group). The baseline characteristics were compa-
rable in the two groups’.

Reproduced from BMJ, Custers et al, 339, b4080 © 2009 with permis-
sion from the BMJ Publishing Group Ltd.

This extract describes the study population from a randomized trial. • 
In this study, further details about the baseline characteristics for the 
two groups were provided online on the journal’s website2 
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Figure 4.1 shows a fl owchart from a study which shows the numbers rand-
omized to each group and the numbers with follow-up data.

Assessed for eligibility (n=141)

Randomised (n=104)

Allocated to supervised exercises (n=52)

Received allocated intervention (n=51)

Allocated to radial extracorporeal

   shockwave therapy (n=52)

Received allocated intervention (n=51)

Available for follow-up (n=44)

Missed follow-up questionnaire (n=8)

Available for follow-up (n=52)

Lost to follow-up visit (n=0)

Available for follow-up (n=50)

Lost to follow-up visit (n=2)

Available for follow-up (n=46)

Missed follow-up questionnaire (n=6)

Available for follow-up (n=50)

Lost to follow-up visit (n=2)

Available for follow-up (n=50)

Lost to follow-up visit (n=2)
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Excluded (n=37):

Not meeting inclusion criteria (n=31)

Refused to participate (n=2)

Other reasons (n=4)

Fig. 4.1 Example of fl owchart showing the time-fl ow of patients recruited, randomized, 
and followed-up3.
Reproduced from BMJ, Engebretsen et al. 339, b3360 © 2009 with permission from the BMJ 
Publishing Group Ltd.
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Research articles: discussion section
Introduction
The discussion section is where the fi ndings of the study are discussed and 
interpreted, helping to put the results in the context of other research, 
and evaluating the strengths and weaknesses of the completed study. 
Although this section tends to include less statistics than the results 
section, a sound understanding of statistics is important in forming conclu-
sions and critically evaluating the study methodology.

Structure for the discussion
2 Some medical journals have a specifi c structure for the discussion for 
researchers to follow, and so it is important to check the journal’s guide-
lines before submitting.

The BMJ requires the following structure:
Statement of principal fi ndings• 
Strengths and weaknesses of the study• 
Strengths and weaknesses in relation to other studies, discussing • 
important differences in results
Meaning of the study: possible explanations and implications for • 
clinicians and policymakers
Unanswered questions and future research• 

 (M http://resources.bmj.com/bmj/authors/types-of-article/research)

Statistics in the discussion section
The examples below illustrate the inclusion and interpretation of statistics 
within the discussion section of papers.

http://resources.bmj.com/bmj/authors/types-of-article/research
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Example 1: ‘Our data extend fi ndings from previous studies of the rela-
tionship between early identifi cation of hearing impairment and later 
outcomes. Adjusted mean vocabulary scores of children with hearing 
impairment, assessed at the age of 5 years, were higher in children 
enrolled before 11 months of age in an early intervention program in 
Nebraska than in those enrolled at 11 to 23 months of age (by 0.69 SD) 
or at 24 to 35 months of age (by 0.99 SD).’1

In this extract statistical information is presented to contrast study • 
fi ndings from previous work

Example 2: ‘Our results confi rm that the risk in users of combined 
oral contraceptives depends on the dose of oestrogen, type of pro-
gestogen, and length of use. Reducing the dose of oestrogen from 50 μg 
to 30–40 μg non-signifi cantly reduced the risk of venous thromboem-
bolism by 17–32%. Reducing the dose from 30–40 μg to 20 μg in users 
of oral contraceptives containing desogestrel or gestodene signifi cantly 
reduced the risk of venous thromboembolism by 18% (95% confi dence 
interval 7% to 27%), after adjustment for duration of use of oral contra-
ceptives. Without this adjustment the association was confounded and 
not signifi cant. Together with the lack of power this may explain why 
few studies have been able to show this dose-response relation. The 
dose-response relation between oral contraceptive use and venous 
thromboembolism strengthens the evidence that the statistical associa-
tions refl ect a causal relation.’2

Reproduced from BMJ, Lidegaard et al, 339, b2890 © 2009 with permis-
sion from the BMJ Publishing Group Ltd.

In this extract the authors show that, after controlling statistically for • 
the confounding effect of duration of pill use, reducing the dose in 
users of oral contraceptives was associated with a signifi cantly lower 
risk of venous thromboembolism

References
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Presenting statistics: managing 
computer output
Computer output
It is common practice to use a computer program to perform statistical 
analyses. These often produce more results than are needed and so the 
relevant results need to be extracted and put into a new document in 
a new format for presentation. Even if the computer only gives the rel-
evant results, these may not be suitable for presentation because they are 
usually given to too many decimal places. 

Reporting statistical analyses
The following points are particularly important in reporting statistical anal-
yses from statistical programs:

Don’t put unedited computer output into a research document• 
Extract the relevant data only and re-format as needed• 
Ensure that the data presented are relevant and appropriate for the • 
given context
Double-check the numbers after they have been extracted to make • 
sure they are correct

SPSS and Stata
Peacock and Kerry’s book Presenting medical statistics from proposal to 
publication1 shows how to carry out many statistical analyses using the 
statistical programs SPSS and Stata, and also shows which parts of the 
output are relevant in particular situations and how these extracts can be 
turned into tables and text suitable for a paper or report. 

The data in the example on b p. 141 are from a study comparing fruit 
and vegetable consumption in smokers and non-smokers. The researchers 
used a Mann Whitney U test (equivalent to the b Wilcoxon two-sample 
signed rank test, p. 303) to analyse the data using SPSS. The computer 
output from a statistical test is shown with an arrow indicating the P value 
that can be reported. The text below the computer output illustrates how 
the results could be reported in a paper.

Many more examples for both SPSS and Stata are given in Presenting 
medical statistics, and each example also gives the commands needed to 
perform the particular analysis in the statistical program. More details 
about statistical programs in general are given in b Chapter 5, p. 155. 
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Example of SPSS output indicating the relevant statistics to 
report for a Mann Whitney U test1

SPSS output
Ranks

smokeas N Mean Rank Sum of Ranks

frandveg 0 180 146.34 26342.00

 1 91 115.54 10514.00

 Total 271   

Test statistics (a) 

frandveg

Mann-Whitney U  6328.000

Wilcoxon W 10514.000

Z   -3.089

Asymp. Sig. (2-tailed)    .002
 

P value

a  Grouping Variable: smokeas

Notes on the variables
smokeas • Is the variable defi ning smoking habit as smoker yes(1) or 
no (0)
frandveg•  is the number of portions of fruit and vegetables consumed 
each day 

Presenting the results
Methods section
The fruit and vegetable scores from smokers and non-smokers were 
compared using a Mann-Whitney U test. The data are presented as 
medians and interquartile range (IQR).

Results section
The median (IQR) number of portions of fruit and vegetable eaten 
per day at baseline among smokers was 3 (2, 4) and 3.75 (2, 5) among 
non-smokers. Smokers reported signifi cantly lower consumption than 
non-smokers (P=0.002).

Reference
1 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Presenting statistics: numerical results
Rounding
Computers usually give results to many decimal places and these should 
be rounded for presentation to make them easier to read and to avoid 
implying a falsely high level of precision. The following suggestions 
make numbers easy to read and absorb but also include all relevant 
information.

Present means, standard deviations, and standard errors to one more • 
decimal place than the individual data values 
Give proportions to two signifi cant fi gures. State the actual number as • 
well unless it is obvious.
Present a proportion as a percentage if the proportion is small. Very • 
small proportions may be easier to read if given as rates per 1000 or 
per 10 000, etc.
Present percentages as two signifi cant fi gures but give the actual • 
numbers as well, unless they are obvious
0•  Beware of presenting percentages for very small samples as they 
may be misleading. Simply give the numbers alone.

Examples: means and standard deviations

Mean and standard deviation (SD) for blood pressure (systolic/diastolic) 
in 1753 pregnant women was given by a statistical program as:

Systolic: mean=112.0553, SD=11.17655
Diastolic: mean=67.3725, SD=8.088683

These can be rounded and reported as:

Systolic: mean (SD)= 112.1 (11.2)
Diastolic: mean (SD)= 67.4 (8.1)

Examples: proportions and percentages

i) Proportion of smokers in a sample is 484/1503 = 0.3220226
This can be reported as a percentage with the numbers in brackets:
Percentage of smokers = 32% (484/1503)

ii) Proportion of stillbirths in England and Wales 2004 

= 3532/643253
= 0.0054908

Such proportions are usually reported as rates per 1000 total births:
= 5.49 per 1000 (easier to understand than 0.549%, especially when 
comparing several fi gures, e.g. for different years)
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Presenting statistics: P values and 
confi dence intervals
P values
It is not always obvious how to present P values obtained from signifi -
cance tests. Statistical programs give P values to many decimal places and 
these are not needed for reporting. The P value is sometimes reduced to 
a yes/no, binary response of not signifi cant versus statistically signifi cant, 
which may be adequate if the estimate and a 95% confi dence interval is 
also given, but in general it does not provide suffi cient information. For 
example if two P values are close to the 0.05 boundary, one just above and 
one just below (e.g. 0.04 and 0.06), the interpretation of the two should 
not be very different. If we reduce these P values to a binary response 
and say that one is signifi cant and the other is not, without qualifying that 
statement, we risk misrepresenting the evidence provided by the tests.

Another common practice is to give the actual P value if the test is 
statistically signifi cant (i.e. if P<0.05) but to simply report the test as ‘not 
signifi cant’ or as ‘NS’ if it is not signifi cant (i.e. if P≥0.05). This again is not 
helpful as the size of the P value indicates the amount of evidence for a 
real difference or real effect and presenting it as it is gives the reader the 
opportunity to see all of this evidence, whether it is signifi cant or not. 

P values are probabilities, presented as proportions, and so it is 
unnecessary to report many decimal places as this obscures the meaning. 
It is common to see statistical signifi cance reported as stars: * for P<0.05, 
** for P<0.01, and *** for P<0.001. Stars are not needed if the actual 
P values are given, but they can be useful if space is limited, for example 
in a large table, and where confi dence intervals are given as well, or in an 
oral presentation. 

In general the following is recommended for P values:
Give the actual P value wherever possible• 
Rounding: two signifi cant fi gures is usually enough • 

Confi dence intervals
These should be given wherever possible to indicate the precision of 
estimates. 

Report the interval to one more decimal place than the original data as • 
for means, standard deviations, standard errors
Report the limits as ‘x, y’ or ‘x to y’ rather than ‘x–y’ or ‘x–y’, as a • 
hyphen or ‘n dash’ could be mistaken for a minus sign
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Examples: P values

The following are P values as given by a statistics program. They can be 
rounded and reported as shown:

0.8113  →  0.81
0.1666  →  0.17
0.0952  →  0.10
0.0402  →  0.040
0.0133  →  0.013

0.0000  →  report as P<0.0001 (as P can never truly equal 0)
1.0000  →  report as P>0.999 (as P can never truly equal 1)

Examples: confi dence intervals

The following examples show estimates and confi dence intervals for 
different estimates:

Prevalence (95% CI): 0.80 (0.78 to 0.82) or 80% (78% to 82%)• 
Mean difference (95% CI): 0.36 (–0.40 to 1.12)• 
Odds ratio (95% CI): 1.52 (1.01 to 2.28)• 
Correlation (95% CI): 0.68  (0.52 to 0.79)• 

(0 Reporting the mean difference (95% CI) as 0.36 (–0.40–1.12) would 
be confusing to read, hence it is better to ‘to’ or a comma)
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Presenting statistics: tables and graphs
Introduction
Tables and graphs are a useful way of presenting the results of statistical 
analyses. When used in written reports, a table or graph should stand 
alone so that a reader does not need to read the text of the report or 
article to be able to understand it.

General guidelines
Give a meaningful title that explains what data are included • 
State the number of subjects or data points• 
Label the rows and columns (tables) or axes (graphs) clearly• 
State any units used, e.g. systolic blood pressure (mmHg)• 
Refer to the table or graph in the text of written reports• 

Example of table from research article

 

Table 4.1 Risk and relative risk of hospital admission before age 2 in 
540 infants who were born extremely preterm by randomized mode 
of ventilation at birth: HFOV (high frequency oscillating ventilation), 
CV (conventional ventilation)1

Outcome HFOV CV Relative risk* 
(95% CI)†

Respiratory admission 
ever

118/276 (43%) 112/264 (42%) 1.01 
(0.83 to 1.23)

Respiratory admission 24/157 (15%) 27/179 (15%) 1.01
(0.61 to 1.68)

Surgical admission ever 59/276 (21%) 59/264 (22%) 0.96
(0.70 to 1.32)

ICU admission ever 23/276 (8%) 25/264 (9%) 0.88
(0.51 to 1.51)

* Relative risk is the ratio of the risk of admission ever in the two groups, HFOV/CV.
† 95% confi dence interval.

Table 4.1 has a clear title, numbers, and percentages are given, and • 
relative risks are given with 95% confi dence intervals
A footnote explains which way round the relative risk was calculated• 
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Common errors
0 Avoid graphs with missing zeros or stretched scales, which can exag-
gerate relationships (see Fig. 4.2).

Example of stretching the scale
Figure 4.2 shows data on stillbirth rates that increased from 1985 to 1990. 
By stretching the scale (second graph), the effect looks more dramatic. 
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Fig. 4.2a,b Stillbirth trends over time presented with two different scales, causing 
the observed increase over time to look greater in the second graph.

References
1 Marlow N, Greenough A, Peacock JL, Marston L, Limb ES, Johnson AH et al. Randomised trial 

of high frequency oscillatory ventilation or conventional ventilation in babies of gestational 
age 28 weeks or less: respiratory and neurological outcomes at 2 years. Arch Dis Child Fetal 
Neonatal Ed 2006; 91(5):F320-6.
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Statistics and the publication process
Introduction
Many journals in medicine and health research now include statistical 
review as part of the peer-review process in response to the increased 
use of statistics in these disciplines. Statistical review usually takes place 
at the end of the review process when a paper has been identifi ed as 
potentially publishable. This typically takes the form of a written report, 
although some journals such as the BMJ have a statistician on their edito-
rial board when making the fi nal decision on papers. 

As a result of this move towards statistical review, journals have 
developed guidelines for authors, which include a section on the statistical 
aspects. The International Committee of Medical Journal Editors (ICMJE) 
has produced guidelines on the use of statistics in medical journals and 
this has been widely adopted (M www.icmje.org). The BMJ’s checklist for 
statistical review is reproduced here.

As a result of the review of statistics, papers may be rejected for 
statistical reasons, since it is generally believed that bad statistics in medical 
research is bad science and provides potentially fl awed evidence.

Statistician’s checklist for BMJ review

Design features of the study:
Was the objective of the study suffi ciently described?• 
Was an appropriate study design used to achieve the objective?• 
Was there a satisfactory statement given of source of subjects?• 
Was a pre-study calculation of required sample size reported?• 

Conduct of study:
Was a satisfactory response rate achieved?• 

Analysis and presentation:
Was there a statement adequately describing or referencing all • 
statistical procedures used?
Were the statistical analyses used appropriate?• 
Was the presentation of statistical material satisfactory?• 
Were the confi dence intervals given for the main results?• 
Was the conclusion drawn from the statistical analysis justifi ed?• 

Recommendation on paper:
Is the paper of acceptable statistical standard for publication?• 

Reproduced from BMJ Resources for authors
(M http://resources.bmj.com/bmj/authors/checklists-forms/statisticians-
checklist).

Reporting guidelines for specifi c studies
There are now reporting guidelines for several types of study, and these 
give helpful guidance about presenting the statistics. These are discussed 
in more detail in the section b Research articles: guidelines, p. 150).

www.icmje.org
http://resources.bmj.com/bmj/authors/checklists-forms/statisticianschecklist
http://resources.bmj.com/bmj/authors/checklists-forms/statisticianschecklist
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Research articles: guidelines
Introduction
The CONSORT (Consolidated Standards of Reporting Trials) group was 
established in 1993 to try to improve the quality of reporting of clinical 
trials. The group produced the CONSORT statement, which is a check-
list of items to include in articles reporting the outcome of randomized 
controlled trials (RCTs). The CONSORT statement is reproduced below. 
In recent years more guidelines have been developed for other study 
designs. Some of these are listed in the next section, b Research articles: 
guidelines (continued), p. 152, with web addresses for further information. 
Many medical journals now require authors to confi rm prior to submis-
sion that their article complies with the appropriate guideline.

CONSORT guidelines for reporting trials

Title and abstract:
How participants were allocated to interventions (e.g., ‘random • 
allocation’, ‘randomized’, or ‘randomly assigned’)

Introduction:
Scientifi c background and explanation of rationale• 

Methods:
Eligibility criteria for participants and the settings and locations where • 
the data were collected
Precise details of the interventions intended for each group and how • 
and when they were actually administered
Specifi c objectives and hypotheses• 
Clearly defi ned primary and secondary outcome measures and, • 
when applicable, any methods used to enhance the quality of 
measurements (e.g., multiple observations, training of assessors)
How sample size was determined and, when applicable, explanation • 
of any interim analyses and stopping rules
Method used to generate the random allocation sequence, including • 
details of any restrictions (e.g., blocking, stratifi cation)
Method used to implement the random allocation sequence (e.g., • 
numbered containers or central telephone), clarifying whether the 
sequence was concealed until interventions were assigned
Who generated the allocation sequence, who enrolled participants, • 
and who assigned participants to their groups
Whether or not participants, those administering the interventions, • 
and those assessing the outcomes were blinded to group assignment. 
If done, how the success of blinding was evaluated
Statistical methods used to compare groups for primary outcome(s); • 
methods for additional analyses, such as subgroup analyses and 
adjusted analyses
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Results:
Flow of participants through each stage (a diagram is strongly • 
recommended). Specifi cally, for each group report the numbers 
of participants randomly assigned, receiving intended treatment, 
completing the study protocol, and analyzed for the primary 
outcome. Describe protocol deviations from study as planned, 
together with reasons
Dates defi ning the periods of recruitment and follow-up• 
Baseline demographic and clinical characteristics of each group• 
Number of participants (denominator) in each group included in each • 
analysis and whether the analysis was by ‘intention-to-treat’. State the 
results in absolute numbers when feasible (e.g., 10/20, not 50%)
For each primary and secondary outcome, a summary of results for • 
each group, and the estimated effect size and its precision (e.g., 95% 
confi dence interval)
Address multiplicity by reporting any other analyses performed, • 
including subgroup analyses and adjusted analyses, indicating those 
pre-specifi ed and those exploratory
All important adverse events or side effects in each intervention • 
group

Discussion:
Interpretation of the results, taking into account study hypotheses, • 
sources of potential bias or imprecision and the dangers associated 
with multiplicity of analyses and outcomes
Generalizability (external validity) of the trial fi ndings• 
General interpretation of the results in the context of current • 
evidence

Reproduced from Moher et al. 2001 ©; licensee BioMed Central Ltd.
M www.biomedcentral.com/1471-2288/1/2.

See also M www.consort-statement.org.

Postscript
As this book is going to press, CONSORT have produced updated 
guidelines – see M www.consort-statement.org for the most up-to date 
guidelines.

www.biomedcentral.com/1471-2288/1/2
www.consort-statement.org
www.consort-statement.org
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Research articles: guidelines 
(continued)
Equator network
The Equator network (Enhancing the QUAlity and Transparency Of health 
Research) is ‘an international initiative that seeks to enhance reliability and 
value of medical research literature by promoting transparent and accu-
rate reporting of research studies.’ (M www.equator-network.org)

The Network brings together a wide range of resources relating to 
health research. Up-to-date lists and links can be found on the website, 
and some of those available at the time of writing are as follows:

TREND: non-randomized controlled trials
M www.trend-statement.org
STARD: studies of diagnostic accuracy
M www.stard-statement.org
PRISMA: systematic reviews and meta-analyses (replaces QUOROM)
M www.prisma-statement.org/
STROBE: observational studies in epidemiology
M www.strobe-statement.org
MOOSE: meta-analyses of observational studies in epidemiology
M www.consort-statement.org/mod_product/uploads/MOOSE%20
Statement%202000.pdf

www.equator-network.org
www.trend-statement.org
www.stard-statement.org
www.prisma-statement.org/
www.strobe-statement.org
www.consort-statement.org/mod_product/uploads/MOOSE%20Statement%202000.pdf
www.consort-statement.org/mod_product/uploads/MOOSE%20Statement%202000.pdf
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Statistical problems in medical papers 
Common causes for rejection
Statistical review is wider in scope than might perhaps be expected. 
A statistician will look for omissions and/or errors in design, analysis, pres-
entation, and interpretation since any of these might invalidate the results 
(b see Statistics and the publication process, p. 148 for the BMJ guidelines). 
Common statistical reasons for rejecting a paper include the following:

The study is too small to be able to show a difference or a relationship• 
The sample is unrepresentative, perhaps due to a low response rate• 
There is bias in the assessment or measurement• 
There is bias in comparisons • 
A non-signifi cant result has been wrongly interpreted as if it meant • 
‘there is no difference’ 
No estimates of sizes of the effects and/or confi dence intervals are • 
given 
There are unplanned sub-group analyses (‘data dredging’)• 
There are problems with the statistical analysis method(s) used • 
An observed association has been interpreted as if it were causal (not • 
considering potential confounding factors)
The conclusions are not supported by the evidence provided• 
There is poor presentation that obscures the important fi ndings • 

Responding to statistical comments on a paper
A reviewer may raise questions about the statistics for any or several of 
the reasons given in the list above. In responding it is worth considering 
whether the statistics are in fact correct but insuffi cient detail or data have 
been given to make that clear. Alternatively, it may be that the methods 
used are not appropriate and that the analysis needs to be repeated using 
a more suitable method. 

If uncertain about statistical comments on a paper, it is worth talking to 
a statistician, who might be able to provide advice on how to respond.
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Choosing and using 
statistical software for 
analysing data

Introduction
In this chapter we will describe the main features of statistics packages, 
what they do, and what they do not do. We will describe how we as 
users interact with packages, how we transfer data between packages, and 
how to decide which package to use. There are many statistical analysis 
computer packages and programs on the market and this chapter will not 
provide a review of what is available. Instead we will discuss the main 
issues that drive the choice of package to use. To illustrate, we will briefl y 
describe a few packages that we know well.
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Statistical software packages
What is a statistical package?
A statistical analysis package is a suite of computer programs that can be 
used to carry out manipulations of data and perform statistical analyses. 
Most of them have a user-friendly interface and do not require the user 
to be an expert in statistical programming. Many statistical packages are 
produced by commercial companies and can be purchased from suppliers 
or bought online. There are increasing numbers of programs and pack-
ages available free on the Internet, although the onus is on the user to 
check that they come from a reputable source, as they may not have been 
checked to the same extent as commercial programs. 

What do statistical packages do?
In general a statistical package can facilitate one or more of the following:

Data entry • 
Data management• 
Data analysis• 
Data presentation, such as producing graphics• 

Some large packages, such as SAS,1 do all of these. 
There is an increasing number of statistical packages designed 

specifi cally for certain specialized topics and analyses, such as PASS2 and 
nQuery Advisor,3 which are used only for calculating the required sample 
size for a study. 

How packages work
Most statistical packages in common use among medical researchers are 
either menu-driven or command-driven. 

Menu-driven packages provide options for the user to select, in 
menus that are usually hierarchical in design. This has the advantage that 
the user does not have to remember commands or computer syntax. 
However, menu-driven programs can be slow if there are no shortcuts 
through the menu system and it may be diffi cult to fi nd the right menu 
and/or set of options to be able to carry out a particular analysis.

Command-driven packages work by the user entering a particular 
command, which will execute the required process or statistical method. 
This method is usually quicker than using menus, but it does require the 
user to remember and enter the actual commands. If the syntax is entered 
incorrectly, for example with a typo, the command will not run. With 
command-driven programs, or where a menu-driven program produces 
a copy of the commands as a syntax fi le, an analysis can be set up once 
and then used for repeated implementation if you need to do the same 
set of analyses several times.

Active and batch mode
Packages for use on personal computers mostly run immediately and work 
in active ‘online’ mode. That is, the results come back immediately after 
each command is entered or menu selected. Some larger computations 
are run ‘off-line’; that is, a set of commands is submitted together and the 
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results for all of them are returned at some future point. Packages used 
over networks may run online or off-line.

Operating systems
Statistical packages run under a variety of operating systems, such as 
Microsoft Windows or Apple Mac for personal computers, Unix, Linux, or 
BSD for networks. The major commercial packages tend to have versions 
available for several operating systems, whereas smaller packages tend to 
be less fl exible and some free software only runs under Windows. 

Costs
Some statistical packages run under a licensing arrangement whereas 
others are sold with perpetual licences. For most commercial pack-
ages, updated versions are regularly supplied by the vendor to allow 
new statistical procedures to be incorporated or existing procedures to 
be extended. These are usually cheaper for existing customers. Some 
software is available on an institutional licence. Prices for individual and 
licence copies may be a little less for academic institutions than commer-
cial institutions, and greater discounts may be available for students. An 
increasing number of statistical packages can be bought on the Internet 
and some allow you to download the full version and try it out for free 
for a few days. 

Scope of packages
The scope varies hugely, with some packages providing a very wide range 
of utilities. Some, such as SPSS,4 are sold as a basic package with a number 
of specialized add-ons. Other packages, such as Stata,5 have user-written 
procedures that are available free online to licence holders. Stata also has 
several different versions which are priced according to the size of the 
dataset that the package will analyse. 

References
1 SAS: Statistical Analysis System. Available from: M www.sas.com
2 PASS: Power analysis and sample size software. Available from: M www.ncss.com
3 nQuery Advisor: Sample size and power calculations. Available from: M www.statsol.ie
4 SPSS: Statistical Package for the Social Sciences. IBM SPSS. Available from: M www.spss.com
5 Stata: Data analysis and statistical software. Available from: M www.stats.com.

www.sas.com
www.ncss.com
www.statsol.ie
www.spss.com
www.stats.com
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Choosing a package
Introduction
There are a number of things to consider when choosing a statistical 
package. These are outlined below:

Cost:• 
 Do you have the resources to buy a package? What is your budget? 

Are you looking for a free package? 
Support:• 

 Do you need technical support? Do you have colleagues who already 
use a particular package and can provide support? Do the authors or 
marketers of the package provide support if you encounter problems 
when using it?
Your institution:• 

 If you belong to an institution, does it support any particular packages? 
Does it have any site licences or purchasing agreements? 
Usability:• 

 How user-friendly do you want the package to be? Do you want a 
menu-driven package or a command-driven one? Do you want to be 
able to write your own programs within the package to do specifi c 
analyses?
Data management:• 

 Do you want the package to manage data, for example merging, 
appending, sub-setting datasets, etc., or do you simply want to analyse 
the data in the package?
Type of analyses:• 

 Do you only want to be able to perform simple analyses, or both simple 
descriptive analyses and complex analyses? Do you need confi dence 
intervals? (Some packages routinely give confi dence intervals for 
estimates whereas others do not).
Specialized methods:• 

 Do you need to use any specialized methods, such as weighted survey 
analyses or meta-analyses? (These may require a separate package or a 
separate add-on to an existing package).
Graphics:• 

 Do you want to produce high quality graphics? (Many packages 
produce good graphics but only a few claim to produce state-of-the-art 
graphs).
Size of datasets• :

 Do you need to process very big datasets with either a large number 
of cases or a large number of variables or both? (Packages tend to 
have an upper limit for the amount of data that they can process. This 
may depend on the package or on the computer used, or both. Some 
packages sell different versions, which can process different amounts of 
data with the larger versions costing more).
Transferring between packages• :

 Do you need to be able to transfer data fi les between packages? Is this 
easy to do?
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Testing:• 
 Have you tested the package or seen it being used? Are you confi dent 

it will do what you want it to do?
Operating system• :

 Are you using this on a personal computer or a network? Which 
operating system will you be using? 
Licence versus perpetual copy• :

 Do you want a perpetual licence or will a time-limited licence meet 
your needs?
Upgrades• :

 If you are using more complex statistical methods, will you want a 
package that receives regular upgrades?
Discounted versions• :

 Does the package offer any discounts that you can take advantage of, 
such as a reduced rate for full-time students, or a reduced rate for 
academic institutions?
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Using a package
Introduction
Statistical packages are wonderful tools that enable us to perform complex 
calculations easily. They facilitate statistical analyses that would previously 
have been impossible to do by hand or with a calculator, and for which 
the details may be technically challenging. 

There is, however, a real danger of inadvertently conducting inappropriate 
analyses, since these packages make it possible to use statistical methods 
we may not fully understand. It is also very easy to ‘surf’ a statistical 
package and a dataset in the same way as we might surf the Internet, and 
end up using many tests and methods which may or may not be sensible. 
This can result in a vast set of results that have no logical thread and are 
impenetrable. Many of us have succumbed to this danger at times since the 
computer is so intoxicating. 

For these reasons some general advice on using statistical packages 
follows, which will help avoid these pitfalls and improve the quality of 
your statistical analyses.

Plan the analysis
It is always good statistical practice to plan the analysis beforehand. 
This applies globally to a whole project and also to individual analyses 
within a project. Planning helps to keep us on track and avoid unneces-
sary analyses or data dredging that can lead us to make wrong inferences.
It is also important to check that the statistical analyses planned are 
appropriate, that any distributional assumptions are met and the analyses 
answer the questions that are intended. The statistical package may still 
perform analyses which are invalid because the sample size, or distribu-
tional model, or design assumptions do not hold. Hence we need to be 
careful.

Keep a log of the analysis 
When performing a statistical analysis, it is important to keep a record of 
the following:

The date of the analysis• 
The dataset that has been used with fi lename, where it is stored and • 
the date of this version 
The commands or set of commands used to do the analyses and get • 
the results
The results as given by the package• 
Any editing of the data that has taken place• 

Most statistics packages will have an option to record a log fi le of the 
routines carried out and results produced, even in menu-driven software 
such as SPSS.

Extracting the relevant results 
Many packages produce lots of output, some of which is relevant for a 
given situation and some of which is not. It is necessary to know what is 
appropriate so that we can present the results later in a concise format. 
It is best not to simply cut and paste results from a statistical package and 
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present this to colleagues, particularly in a formal document. The relevant 
results from the computer need to be extracted and put into a new 
format to highlight the key fi ndings. It is particularly important to report 
the numbers of observations included in each analysis. Peacock and Kerry1 
give many examples of how to do this in two commonly used statistical 
packages, SPSS and Stata. 

Missing data
All research has some degree of missing data and it is important to be 
aware of how the package handles it. For example, missing data are some-
times denoted by a blank cell or a dot (.) in a data spreadsheet (b Form 
fi lling and coding, p. 78). Different statistical methods have specifi c ways 
of dealing with missing data and it is important to be aware of this. For 
example, multiple regression usually requires data to be present on all 
variables included in an analysis and so the number of subjects included 
in a multiple regression analysis may be much less than the total sample 
size if many subjects have one or more missing values for some varia-
bles. Also different multiple regression analyses may have different pat-
terns of missing data and so may be based on different sets of individuals 
(b Missing data, p. 402). 

Graphics
Nowadays packages tend to be quite fl exible in how they allow graphs 
to be exported to other applications, but it is worth checking how easy 
this will be. It may be necessary to export data into a separate graphics 
package to improve the quality of the graphs.

Format
We need to make sure that the data are in the format that the package 
accepts and to ensure that, for particular analyses, variables are coded 
appropriately. For example, for some analyses of binary outcomes the 
package may expect the binary data to be coded 0 or 1 to denote ‘no’ 
or ‘yes’. 

Books
There are many books that show how to use particular packages, espe-
cially the common ones, such as SPSS,2 SAS,3 and Stata.5 These can be 
helpful in getting to grips with a package but they are not always a good 
source of information about the actual statistical methods. 

References
1 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
2 SPSS: Statistical Package for the Social Sciences. IBM SPSS. Available from: M www.spss.com
3 SAS: Statistical Analysis System. Available from: M www.sas.com
4 Stata: Data analysis and statistical software. Available from: M www.stats.com.

www.spss.com
www.sas.com
www.stats.com
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Examples of using statistical packages 
Chi-squared test
The examples that follow show the computer output results from a chi-
squared test done in three commercial statistical packages: SPSS,1 Stata,2 
and SAS.3 The two variables are smoking (0=no, 1=yes) and low birth-
weight (0=no, 1=yes). The test examines whether there is any evidence 
for a relationship between smoking during pregnancy and low birthweight. 
For explanation of the chi-squared test, see b Chi-squared test, p. 262.

SPSS

Crosstabs

smoking * lowbw Crosstabulation

 lowbw Total

  no yes

smoking No Count 979 40 1019

  % within smoking 96.1% 3.9% 100.0%

 Yes Count 454 30 484

  % within smoking 93.8% 6.2% 100.0%

Total Count 1433 70 1503

 % within smoking 95.3% 4.7% 100.0%

Chi-Square Tests

Value df Asymp Sig. 
(2-sided)

Exact Sig. 
(2-sided)

Exact Sig. 
(1-sided)

Pearson Chi-Square 3.818(b) 1 .051   

Continuity 
Correction(a)

3.320 1 .068   

Likelihood Ratio 3.651 1 .056   

Fisher’s Exact Test    .066 .036

N of Valid Cases 1503     

a Computed only for a 2x2 table
b 0 cells (.0%) have expected count less than 5. The minimum expected count is 22.54.
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SPSS results
This SPSS output gives row percentages for the table and gives P values 
for four slightly different versions of the chi-squared test. All give similar P 
values. Note that for Fisher’s exact test, the two-sided P value is the one 
to use. SPSS also states the number of cells with expected values less than 
fi ve so that the user can see if the test is valid (see b Chi-squared test, 
p. 262, for more on this).

Stata

Key

frequency

row percentage

column percentage

smoker

lowbw 0 1 Total

0 979 454 1,433 

68.32 31.68 100.00 

96.07 93.80 95.34 

1 40 30 70

57.14 42.86 100.00 

3.93 6.20 4.66 

Total 1,019 484 1,503 

67.80 32.20 100.00

100.00 100.00 100.00

Pearson chi2 (1) = 3.8177 Pr =  0.051

likelihood-ratio chi2 (1) = 3.6505 Pr =  0.056

Cramér’s V = 0.0504

gamma = 0.2359 ASE =  0.117

Kendall’s tau-b = 0.0504 ASE =  0.027

Stata results
These are set out differently from the SPSS output and are in plain text 
format. This analysis has also given several versions of the chi-squared test. 
The values are the same as given by SPSS. Stata does not give information 
about ‘expected’ values (see b Chi-squared test, p. 262).

References
1 SPSS: Statistical Package for the Social Sciences. IBM SPSS. Available from: M www.spss.com.
2 Stata: Data analysis and statistical software. Available from: M www.stats.com.
3 SAS: Statistical Analysis System. Available from: M www.sas.com.

www.spss.com
www.stats.com
www.sas.com


164 CHAPTER 5 Choosing and using statistical software

Examples of using statistical packages 
(continued)
SAS

TABLE OF SMOKER BY LOWBW 

LOWBW SMOKER

Frequency

Percent

Row Pct

Col Pct 0 1 Total

0 979 454 1,433 

65.14 30.21 95.34

68.32 31.68

96.07 93.80

1 40 30 70

2.66 2.00 4.66

57.14 42.86

3.93 6.20

Total 1,019 484 1,503

67.80 32.20 100.00

Frequency Missing = 10

STATISTICS FOR TABLE OF LOWBW BY SMOKER

Statistic DF Value Prob

Chi-Square 1 3.818 0.051

Likelihood Ratio Chi-Square 1 3.651 0.056

Mantel-Haenszel Chi-Square 1 3.815 0.068

Phi Coeffi cient 0.050

Contingency Coeffi cient 0.050

Cramer’s V 0.050

Effective Sample Size = 1503

Frequency Missing = 10

SAS output
This is similar to the Stata output. SAS additionally states the number of 
observations used in the analysis and the number of subjects with missing 
data.
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Comparisons between outputs
All three give the same test statistics and P values for the main chi-squared 
test. Varying additional tests statistics are given. The layout is slightly 
 different in the three packages. 

For all three sets of results, the output is not suitable for reporting 
as it is. All three packages, and most packages in practice, give more 
information than is needed for reporting. The appropriate results should 
be extracted and reported either in text, or if part of a set of analyses, in a 
table (see example below, and also Peacock and Kerry1). 

These three packages have been shown as they are familiar to us and 
to illustrate what you might see when you use a package. There are 
many other packages which can also be used (see b Common packages, 
p. 170). 

Example: presenting results from a chi-squared test
Table 5.1 provides a template for presenting the results of the chi-squared 
test shown in the section b Examples of using statistical packages, 
p. 162. In this example, the results could be combined with those for other 
risk factors for low birthweight, such as alcohol and illicit drugs (data not 
shown here). Underneath the table is an example of the accompanying 
text that could appear in a document reporting the results.

Table 5.1 Risk factors for low birthweight

Birthweight

Risk factor during 
pregnancy

Normal (n=1433) Low (<2500g) 
(n=70)

P-value for 
chi-squared 
test

Smoking 31.7% (454/1433) 42.9% (30/70) 0.051

Alcohol

Illicit drug use

Description
There was a higher prevalence of smoking during pregnancy among 
mothers with low birthweight babies, compared with those with normal 
weight babies. This difference was of borderline statistical signifi cance 
(P=0.051, Table 5.1).

References
1 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Using spreadsheets for analysis
Spreadsheets can be used for data entry and data analysis by means of their 
in-built routines. The statistical methods available are limited but there are 
also add-ons available for purchase online that will extend the scope of 
the spreadsheet. These can be found by searching on the Internet. 

We show below the results of doing the chi-squared analysis shown 
in the section b Examples of using statistical packages, p. 162, for SPSS, 
Stata and SAS, using Excel with two different add-ons, XLSTAT1 and 
Analyse-it.2 These analyses were both done using the 30-day free trial 
versions of the packages. 

XLSTAT

Test of independence between the rows and the columns (Chi-square):

Chi-square (Observed value) 3.818

Chi-square (Critical value) 3.841

DF 1

p-value 0.051

alpha 0.05

Test interpretation:

H0: The rows and the columns of the table are independent.

Ha: There is a link between the rows and the columns of the table.

As the computed p-value is greater than the signifi cance level alpha=0.05,  one 
should accept the null hypothesis H0.

The risk to reject the null hypothesis H0 while it is true is 5.07%.

Comment on XLSTAT output
The test statistic and P value were, as expected, the same as for the other 
three packages shown in the section b Examples of using statistical pack-
ages, p. 162.

The output included an interpretation that fi ts with the usual signifi cant/
not signifi cant interpretation of a P value and which talks in terms of 
accepting or rejecting the null hypothesis. In medical statistics we do not 
usually use this interpretation since it implies that if P is greater than 0.05, 
then the null hypothesis is true. In fact, a P value greater than 0.05 simply 
means is that there is insuffi cient evidence that an association exists (i.e. 
there is insuffi cient evidence to reject the null hypothesis). In this case P is 
only just greater than 0.05 (0.051) and so a more measured conclusion 
is appropriate. See Altman and Bland3 for further discussion of ‘non-
signifi cant’ fi ndings.
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Analyse-it
The same analysis was repeated using Analyse-it.2 The output has been 
re-formatted from that produced by the package to allow it to fi t here. 
The package has a report facility but this was not available in the free 
evaluation version. 

n 1503   

    

 SMOKING 

LOWBW no yes Total

no 979 454 1433

 (971.5) (461.5)  

yes 40 30 70

 (47.5) (22.5)  

Total 1019 484 1503

    

Pearson’s X2 statistic 3.82   

DF 1   

p 0.0507   

Comment on Analyse-it output
The test statistic and P value were the same as found in the other pack-
ages. The additional feature is that this package gives ‘expected’ values in 
brackets in the table, although there is no legend to say that this is what 
they are (b Chi-squared test, p. 262).

General comments
Both packages were easy to download and use for a chi-squared test but 
a full review has not been undertaken for either add-in. Since these and 
other similar add-in packages can be tried for free, it is easy to do your 
own evaluation before buying.

References
1 XLSTAT: Data analysis and statistical solution for Microsoft Excel. Available from: M www.

xlstat.com.
2 Analyse-it: Statistical analysis software for MS Excel. Available from: M www.analyse-it.com
3 Altman DG, Bland JM. Absence of evidence is not evidence of absence. BMJ 1995; 

311(7003):485.

www.xlstat.com
www.xlstat.com
www.analyse-it.com
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Transferring data between packages
Introduction
We sometimes need to transfer data fi les between packages or between 
computers, for example, because data are entered in one package and will 
be analysed in another or because some analyses need to be done in one 
package and some in another. It is worth thinking about this at the outset 
to reduce the possibility of things going wrong. Statistical packages often 
store the data as a coded fi le that cannot be directly transferred from 
one program to another and so another approach is needed.

Ways of transferring data
By • creating an export version of the data within the package which 
can be directly imported into another package. Not all packages can 
do this.
Via a • spreadsheet: some packages hold their data internally in a 
spreadsheet and data can be cut and pasted from one spreadsheet to 
another, although this is not recommended (b Joining datasets, 
p. 110)
Via a • data transfer program such as Stat/Transfer,1 which will take 
coded fi les from a range of packages and transfer them directly into 
the right format for another package. Using a transfer program will 
usually mean that variable names and labels are also transferred. Other 
methods listed above may not do this.

Potential problems
Missing data:•  how are these handled in the transfer? Has it worked 
properly?
Data format:•  have text data transferred properly and are they in the 
right format, for example are data in string format still in string format? 
Have numerical data transferred correctly and are they in the right 
format?
Versions of programs:•  problems of compatibility can occur when 
transferring data fi les between different versions of the same package. 
Data fi les created with later versions of a package may not be readable 
in earlier versions.

Checking
It is best to check carefully that the transfer has been successful, and that 
values and formats have not changed, particularly if doing a particular 
transfer for the fi rst time. Check all the data if possible or a representative 
sample.

Reference
1 Stat/Transfer: Data conversion software utility. Available from: M www.stattransfer.com.

www.stattransfer.com
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Common packages
Comments and disclaimer

There is always a danger when providing any such list that it will miss • 
key items and/or it will be immediately out of date. Table 5.2 is not an 
exhaustive list of statistical packages, and references are not given. 
Most packages have a website, which can be found using a simple • 
Internet search. More packages, particularly free ones, and specialized 
packages can be found in the same way. 
This is not a review of statistical packages – we have not used all of the • 
packages listed but believe them to be in common use
Many commercial packages allow a free trial version to be downloaded • 
from the Internet. It is worth trying out different ones.
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Table 5.2 Commonly used statistical packages

Package name Comment Commercial 
or Free

Analyse-it Add-on to MS Excel C

CIA Confi dence interval analysis available 
with book ‘statistics with confi dence’, 
Altman et al.1

C

Epi-info Produced by CDC Atlanta F

Excel Spreadsheet C

GenStat General statistics package C

MedCalc For biomedical sciences C

Minitab General statistics package C

MLwiN For fi tting multi-level models C

NCSS General statistics package C

NQuery Advisor For sample size calculations C

OpenEpi Companion to EpiInfo (CDC Atlanta) F

PASS For sample size calculations C

R Programming language for statistics F

SAS General statistics package C

SigmaPlot For graphics C

SigmaStat For group analysis C

SPC XL Add-on to MS Excel C

S-Plus General statistics package C

SPSS General statistics package C

Stat/Transfer Transfer data between packages C

Stata General statistics package C

STATISTICA General statistics package C

StatsDirect General statistical package C

Statxact Exact analyses; useful for small samples C

StudySize For sample size calculations C

SUDAAN Add-on to SPSS/SAS for survey analysis C

Systat General statistics package C

Unistat General statistical package & MS Excel 
add-in

C

WinBUGS For Bayesian analysis F

XLSTAT Add-on to MS Excel C

Reference
1 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London: BMJ Books, 2000.
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Summarizing data

Introduction
In this chapter we describe types of quantitative and categorical data 
and show how these different types of data can be summarized numeri-
cally and in graphs. We give worked examples of how to calculate mean, 
median, standard deviation, and interquartile range, and give examples of 
displaying data in graphs.
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Why summarize data?
Introduction
There are several different reasons why we may wish to summarize data:

For data quality monitoring – checking the data as they are collected• 
For data checking – checking the data that have been collected and/• 
or entered onto a computer – this process is sometimes called ‘data 
cleaning’
To report the basic features of the sample in a study – baseline data• 
As a precursor to more complex methods of statistical analysis• 

Data quality monitoring
The aim of this is to check that the data are complete as collection 
takes place so that any problems can be addressed before it is too late 
(b Data quality, p. 81). Often all that is needed is a count of the data 
items for each variable or question to check for any missing items. For 
example a particular question in a self-completed questionnaire may fre-
quently be missed because it is on another page. This can be picked up 
early by simply counting the number of replies to each question. 

Data checking and data cleaning
The aim of this is to make sure that the data are correct on the com-
puter record. Errors can arise if a research subject mis-reports informa-
tion or the researcher mis-records that information. Further errors may 
be introduced when the data are transferred onto a computer. Some 
errors can be identifi ed by simple range checks – computing the minimum 
and maximum values for a particular response. This will highlight values 
outside the expected range but errors that are still within range will not 
be found in this way. Other errors can be identifi ed by simple cross-tabu-
lations, which may highlight inconsistent combinations, such as in a study 
that is recording smoking habits a subject is recorded as a non-smoker but 
has given the number of cigarettes smoked (b Data checking examples, 
p. 118).

Baseline data in a study
Simple descriptive data is informative in supplying the backcloth against 
which more analytical fi ndings can be interpreted: for example, the 
numbers of subjects in various demographic categories, or mean values 
for key variables such as the main diagnosis. This enables the researchers 
and readers to interpret the fi ndings and determine the context in which 
the results could be more generally applied. For example, the results of 
a study conducted in one country may apply in another country if both 
countries have similar baseline characteristics. 
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Before doing a complex analysis
It is relatively easy to do quite complex statistical analyses using a com-
puter program but in order to interpret the results in a meaningful way, 
and be sure that they are appropriate methods to use in the fi rst place, 
descriptive summary data are needed. For example, before doing any 
sort of regression analysis with several variables, simple descriptive anal-
yses are needed for the variables involved to determine the individual 
inter-relationships.

Summary points

Summary statistics:
Allow us to look at the data carefully• 
Are useful at all stages of a study • 
Help improve the quality of the data by highlighting possible errors• 
Provide a backcloth against which later analyses can be interpreted • 
and thus allow researchers to draw more meaningful conclusions
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Types of data
Quantitative and categorical data
In order to know what sort of statistical analysis is appropriate, it is impor-
tant to know what type of data we are handling. There are several ways of 
classifying data, which are discussed in this chapter, but the simplest is to 
consider data as either quantitative or categorical (see b Quantitative 
data, p. 178, and Categorical data, p. 180).

0 Note that categorical data are sometimes known as ‘qualitative’ 
data. This term is rather ambiguous as it can be confused with those data 
collected from a qualitative study, such as text obtained from in-depth 
interviews. Data from purely qualitative studies are analysed using non-
statistical methods and are not considered in this book. 

A variable
A variable is a quantity that is measured or observed in an individual 
and which varies from person to person. 

For example, blood pressure is a variable because blood pressure varies 
from person to person. Another example is blood group, which also varies 
from person to person. A further example is gender, where people can be 
classifi ed as either male or female. We use the term ‘variable’ in statistics 
to refer to any such quantity. 

Note that variables can be derived when the research subject is an 
organizational unit rather than a person, such as when studying the use 
of operating theatres in a set of hospitals and calculating the proportion 
of time that they are in use in each hospital. The concept of variables 
is discussed further in Chapter 7 (b Independence: data and variables, 
p. 204).

Statistic
A statistic is any quantity that is calculated from a set of data. 
For example mean blood pressure calculated in a group of subjects is 
a statistic. Another example is the proportion of people who are over-
weight in a sample. A statistic summarizes the data in some sense. 

There are many different statistics that can be calculated from data and 
the choice of which to use is driven partly by the type of data and partly by 
the purpose of the study. In many cases several statistics will be calculated 
from the same set of data. A simple example of this is if we calculate both 
the minimum and maximum age of subjects in a study – these are two 
different statistics, both of which are useful summary measures.
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Quantitative data
Defi nition
Quantitative data are data that can be measured numerically and may 
be continuous or discrete.

Continuous data•  lie on a continuum and so can take any value 
between two limits. The only limitation is that imposed by the accuracy 
of the method of measurement so that some continuous data may be 
recorded as integers, although that is an approximation to the true 
value
Discrete data•  do not lie on a continuum and can only take certain 
values, usually counts (integers)

Examples
Weight is a • continuous variable because it is measured using weighing 
scales. A person’s weight lies on a continuum and the only limitation is 
the accuracy of the scales
The number of previous pregnancies in a pregnant woman is • discrete 
data since it is counted and only whole numbers are possible 
Quantitative data can be further classifi ed as being on an ‘interval scale’ 

or on a ‘ratio scale’. 

Interval scales
On an interval scale, differences between values at different points of the 
scale have the same meaning. For example if a man who weighs 12 stone 
gains weight and becomes 12½ stone, his weight gain is the same as that 
of a woman who goes from 9 stone to 9½ stone – both the man and the 
woman gain half a stone (7 pounds) and the meaning is exactly the same, 
even though their starting weights were different.

Ratio scales
Data can be regarded as on a ratio scale if the ratio of two measure-
ments has a meaning. For example we can say that twice as many people 
in one group had a particular characteristic compared with another group 
and this has a sensible meaning. Similarly we could say that one person’s 
weight loss was twice that of another and this would also have an inter-
pretable meaning. 

In contrast, temperature is not ratio data because we cannot say 
that one temperature is twice as hot as another. To demonstrate this 
consider if we looked at 30ºC which is ‘twice’ 15ºC. But if we convert it 
to Fahrenheit, 30ºC=86ºF and 15ºC=59ºF. So, in degrees Fahrenheit the 
temperature is not doubled. This is of course because of the arbitrary 
zero on the scale for temperature. Note that even using a temperature 
scale based on ‘absolute zero’ the concept of a doubling of temperature 
would still be nonsensical in everyday use.

Ordinal data
Quantitative data are always ordinal – the data values can be arranged in 
a numerical order from the smallest to the largest. Questionnaire scale 
data are often ordinal and are often counts, such as when adding the 
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number of positive responses to a set of questions to get a total score. 
Categorical data may also have an inherent ordering and so be ordinal, 
such as stage of disease.

Notes
Interval scale data are always ordinal. Ratio scale data are always • 
interval scale data and therefore must also be ordinal
In practice, • continuous data may look discrete because of the way 
they are measured and/or reported. For example gestational age of 
babies is often reported in whole weeks, such as 38 weeks, and so 
appears to be discrete. It is however continuous because it could be 
reported to a greater degree of accuracy, for example as a decimal, 
such as 38.5 weeks
0•  All continuous measurements are limited by the accuracy of 
the instrument used to measure them, and many quantities such as 
age and height are reported in whole numbers for convenience
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Categorical data
Defi nition
Categorical data are data where individuals fall into a number of separate 
categories or classes. For example:

Gender: male or female = two classes• 
Disease status: alive or dead = two classes• 
Stage of cancer: I, II, III, or IV = four classes• 
Marital status: married, single, divorced, widowed, or legally separated • 
= fi ve classes

Ordering
Different categories of categorical data may be assigned a number for 
coding purposes (b Form fi lling and coding, p. 78), and if there are several 
categories, there may be an implied ordering, such as with stage of cancer 
where stage I is the least advanced and stage IV the most advanced. This 
means that such data are ordinal but not interval because the ‘distance’ 
between adjacent categories has no real measurement attached to it. The 
‘gap’ between stages I and II disease is not necessarily the same as the ‘gap’ 
between stages III and IV.  Apparently similar gaps between categories 
may not have the same clinical meaning. Similarly, calculating a mean stage 
of cancer for a group of individuals would be nonsensical.

Where categorical data are coded with numerical codes, it might appear 
that there is an ordering but this may not necessarily be so. It is important 
to distinguish between ordered and non-ordered data because it 
affects the analysis. For example, marital status as given above might be 
coded 1, 2, 3, 4, and 5, but is not ordered data – we cannot say that 
‘single’ comes before ‘divorced’ or that ‘widowed’ comes before ‘legally 
separated’ in any meaningful sense. 

Dichotomous data
This is where there are only two classes and all individuals fall into one 
or other of the classes. These data are also known as binary data. 

Categorizing continuous data
It is possible to reclassify continuous data into groups, perhaps for ease of 
reporting. For example it is common to report birthweight in bands, giving 
the numbers of babies who fall into each birthweight band.



181CATEGORICAL DATA

Example: categorizing birthweight
<2500 g
2500–2999 g
3000–3499 g
3500–3999 g
4000–4499 g
≥4500 g

Consequences of categorizing continuous data
0•  Dichotomizing (re-categorizing data into two groups) is 
potentially very problematic because a great deal of information is 
discarded and statistical power is lost in the analysis (b Outcomes: 
continuous and categorical, p. 46). In addition, the nature of any 
relationships may be masked. For example, if the relationship was 
curved, this may be weaker if the data were categorized and if the 
relationship was U-shaped, categorization may totally obscure it. 
If continuous data are • reclassifi ed into several groups, the effect on 
statistical power is less than when dichotomizing. Grouping causes 
no problem if the reclassifi cation is done simply to present summary 
statistics but the original data are used in the analysis.
Sometimes it can be useful to reclassify continuous data into several • 
groups when we are examining a non-linear relationship. The analysis 
may be more straightforward and more meaningful if the data are 
grouped. 
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Summarizing quantitative data
Continuous data
Continuous data can be summarized in several different ways and many of 
these are either a measure of the centre of the data distribution or a 
measure of the variability of the data.

Measures of the centre of the data
Mean• 
Median• 

Measures of variability
Standard deviation (variance)• 
Range (minimum, maximum)• 
Interquartile range• 

Mean
This is the simple average of all the data: the sum of all values divided by 
the total number of values. This mean is known as the arithmetic mean. 
Two other types of mean, the geometric mean and the harmonic mean, 
are described in the section b Geometric mean, harmonic mean, mode, 
p. 188. 

Median
This is the middle value when the data are arranged in ascending order of 
size. If there are an odd number of values in the sample then the median 
will be the value with the same number of values both bigger than it and 
smaller than it. If there is an even number of values, there will be two 
middle values and the median will be the mean of the two. 

Standard deviation
This indicates how dispersed the data are and is a measure of the 
average difference between the mean and each data value. It is calculated 
by taking the square root of the variance. The variance is calculated by 
summing the squared differences between the overall mean and each 
value and then dividing by the number of values minus one. The sample 
standard deviation is often abbreviated to ‘SD’ or ‘S’. 

The advantage of the • standard deviation over the variance is that it is 
in the same units as the original data and so is easier to interpret
0•  Note that a different denominator is used when the whole 
population variance is calculated; we divide by n. Since we virtually 
always have a sample, the SD is obtained by dividing by n–1 
because it can be shown to give a more accurate estimate of the 
population standard deviation

Range
This is the difference between the smallest and largest value and is usually 
expressed as the minimum and maximum. Sometimes the actual differ-
ence between the two extremes is presented, but this is not a good idea 
as it does not show the extremes.
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Interquartile range
This is the range of values that includes the middle 50% of values and is 
bounded by the lower and upper quartile. The lower quartile is found 
by ranking the data as for the median and then taking the value below 
which 25% of the data sit. The upper quartile is the value above which the 
top 25% of data points sit. 

Percentiles (centiles) in general
The median and quartiles are examples of percentiles – points which 
divide the distribution of the data into set percentages above or below a 
certain value. The median is the 50th centile, the lower quartile is the 25th 
and the upper quartile is the 75th. Although these are the most common 
centiles that we calculate, any percentile can be calculated from con-
tinuous data. For some data, a different percentile may provide a useful 
summary. For example, child growth charts show several different centiles 
(calculated from the general population) to allow detection of children 
with poor growth. The formula is given below (b Calculation of median, 
interquartile range, p. 186, has worked examples):

1. When q(n+1) is an integer where q is a decimal between 0 and 1, 
from a data set with n values, the qth centile is:

xq(n + 1) ie the q(n + 1)th value of x

2. When q(n+1) is not an integer then if  k is the integer part of q(n+1), 
the centile must lie between the kth and (k+1)th values, xk and xk+1. 
The qth centile will then be:

xk + (x k + 1 – xk)(q(n + 1) – k)
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Calculation of mean, SD
The data: heights of 106 women in cm

156 161 172 162 167 158 163 160 155

160 165 173 152 168 160 161 169 158

161 172 160 167 164 151 166 172

167 153 177 166 161 176 164 167

166 156 156 155 166 166 162 161

165 165 161 148 149 158 163 177

167 169 156 159 160 160 158 160

163 162 170 142 157 156 162 170

157 167 162 160 164 167 147 158

177 154 169 161 157 160 163 157

156 159 159 160 172 173 166 167

168 154 165 167 175 167 163 164

165 170 177 159 161 170 163 164

Algebraic notation

Greek symbols are used as shorthand in mathematics and statistics to • 
make it easier to give general formulae for statistical quantities
The • sigma symbol Σ is used to defi ne a sum of a number of items 
which are identifi ed by subscripts such as x1, x2, x3 and so on and in 
general xi

Hence • 
n

i
i 1

X
=
∑  indicates the sum of all xs from x1, x2, x3  to  xn 

i.e.  x1 + x2 + x3 +… + xn
–

• x denotes the mean of the variable x. It is spoken as ‘x bar’.
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The calculations

Mean: 
i 1

n

⎛ ⎞n

X⎜ ⎟X
⎞⎞

X
⎛⎛
⎝ ⎠i 1
⎜ ⎟⎜ ⎟iX

= (156 + 160 + 161 + … + 155 + 158)/106

= 162.764 (to 3 decimal places)
= 162.8 cm (to 1 decimal place, suffi cient accuracy for reporting)

Variance (to get standard deviation) 

 

⎧ ⎫n
2( X X )⎪ ⎪
2( X X )
⎫⎫2⎧⎧

( X X )−
⎪ ⎪1
⎪ ⎪⎪ ⎪i( X X )

⎨ ⎬i 1

1
⎪ ⎪⎪ ⎪i 1

⎪ ⎪n 1
⎨ ⎬⎨ ⎬

1
⎪ ⎪
⎪ ⎪⎪ ⎪
⎩ ⎭⎪ ⎪⎪ ⎪

(156 – 162.764)2 + (160 – 162.764)2 + (161 – 162.764)2 + … + (158 – 162.764)2

105

=  4735.104
105

=  45.095 cm2

Standard deviation

45.095

= 6.7 cm to 1 decimal place
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Calculation of median, interquartile 
range
The data
These are as given in b Calculation of mean, SD, p. 184.

Median and quartiles
First tabulate the data in order of size:• 

Height Frequency Cumulative frequency

142 1 1

147 1 2

148 1 3

149 1 4

151 1 5

152 1 6

153 1 7

154 2 9

155 2 11

156 6 17

157 4 21

158 5 26

159 4 30

160 10 40

161 8 48

162 5 53

163 6 59

164 5 64

165 5 69

166 6 75

167 10 85

168 2 87

169 3 90

170 4 94
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Height Frequency Cumulative frequency

172 4 98

173 2 100

175 1 101

176 1 102

177 4 106

The median is the half-way point, which is between the 53rd and 54th • 
value
These are 162 and 163 and so the median is (162+163)/2 = 162.5 cm• 
The lower quartile (LQ) is calculated using the formula given previously:• 
q(n+1) =0.25 x 107 = 26.75 so LQ lies between 26th and 27th values, 
158 and 159
LQ= 158 + (159–158) x 0.75 = 158.75 cm
The upper quartile (UQ) is calculated using the same formula:• 
q(n+1)=0.75 x 107=80.25 so UQ lies between 80th and 81st values, 
both 167
UQ is therefore 167 cm
The interquartile range is therefore 159 to 167 (rounded)• 
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Geometric mean, harmonic mean, 
mode
Introduction
The mean that we calculated previously (b Summarizing quantitative 
data, p. 182) is the arithmetic mean and is most commonly used. This 
gives a measure of the middle of the distribution when the data follow a 
reasonably symmetrical distribution, but when the data are skewed it will 
not represent the middle. Most non-symmetrical data distributions have a 
positive skew, that is, the tail of the distribution is longer on the right-hand 
side. In such cases the arithmetic mean will be disproportionately infl ated 
by the small number of high values in the upper tail of the distribution and 
so the geometric mean may be preferred. 

Geometric mean
This is calculated using log-transformed data – each data value is 
replaced by its logarithm to base e. The arithmetic mean is then calculated 
on the new log-transformed scale and this is back-transformed using the 
exponential transformation to give a mean that is in the same units as the 
original data. 

Harmonic mean
The harmonic mean is also based on transformed data values and is the 
back-transformation of the arithmetic mean of the reciprocal of the 
data (1/value). It can be used when the data are highly positively skewed, 
but it is not commonly seen in practice. 

Mode
The mode is the value which has the greatest frequency. It has limited 
usefulness for continuous data but is useful for categorical data where it 
indicates the most common category.

Example
Figure 6.1 shows a histogram of alcohol data, which are also shown in 
b Graphs, scatter plots and shapes of distributions, p. 198. The distribu-
tion is positively skewed. These data are used to illustrate the calculation 
of geometric and harmonic means. 
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Fig. 6.1 A skewed distribution: alcohol intake in 854 pregnant women.

Calculation of geometric and harmonic means

As this is a large dataset, we only show a few values before and after 
transformation of the data to illustrate the calculations:

Alcohol (g) Loge(alcohol) 1/alcohol

3 1.0986 0.3333

20 2.9957 0.0500

25 3.2189 0.0400

102 4.6250 0.0098

To calculate the geometric mean:

1.0986 + 2.9957 + 3.2189 + 4.6250 + …
854

= 2552.285 = 2.9886
854

Geometric mean = exp(2.9886) = 19.9 g(to 1 decimal place)

To calculate the harmonic mean:

0.3333 + 0.0500 + 0.0400 + 0.0098 + …
854

= 62.6304 = 0.0733
854

Harmonic mean =    1  =13.6 g (to 1 decimal place)
0.0733

Note that the geometric mean is smaller than the arithmetic mean and 
is close to the median value, 20 g. The harmonic mean is smaller still.
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Choosing a summary measure for 
quantitative data
Introduction
It is usually useful to present more than one summary measure for a set 
of data and we give some suggestions as to what summary measures will 
be useful in different situations. If the data are going to be analysed 
later using methods based on means then it makes sense to present 
means rather than medians. If the data are skewed they may need to be 
transformed before analysis and so it is best to present summaries based 
on the transformed data, such as geometric means.

Centre of distribution
Continuous data with symmetrical distribution – use arithmetic mean• 
Continuous data with positively skewed distribution – consider • 
geometric or harmonic mean but be aware that these do not allow 
zero values. See notes on transformations (b Transforming data, 
p. 330) for more on this topic.
Continuous data with skewed distribution – consider median• 
Discrete data – present median unless the range of data is large enough • 
to make the calculation of a mean sensible 
For example, the number of children in a family is discrete and although 
sometimes the mean number is calculated (‘2.4 children’), it may be 
diffi cult to interpret.

Spread of distribution
Continuous data – use standard deviation (see notes 2 and 3 below)• 
Continuous data with skew – consider using interquartile range (see • 
notes 2 and 3)
Continuous data – the range (min to max) is often useful if there is • 
room to present this in addition to the standard deviation

Notes
1 For very skewed data rather than reporting the median, it may be 

helpful to present a different percentile (i.e. not the 50th), which 
better refl ects the shape of the distribution. This may be particularly 
useful when comparing two groups where the medians are the same 
but the outer tails of the distributions are different. 

2 Some researchers are reluctant to present the standard deviation 
when the data are skewed and so present the median and range and/
or quartiles. If analyses are planned which are based on means then 
it makes sense to be consistent and give standard deviations. Further, 
the useful relationship that approximately 95% of the data lie between 
mean ± 2 standard deviations, holds even for skewed data (see Bland, 
Chapter 41).

3 If data are transformed, the standard deviation cannot be back-
transformed correctly and so for transformed data a standard 
deviation cannot be given. In this case the untransformed standard 
deviation can be given or another measure of spread. This is discussed 
further in Chapter 8 (b Transforming data, p. 330).
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4 For discrete data with a narrow range, such as stage of cancer, it may 
be better to present the actual frequency distribution to give a fair 
summary of the data, rather than calculate a mean or dichotomize it.

5 It is good practice to report the actual number of data values as well 
as the summary values since in general we have more confi dence in 
greater numbers.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Summarizing categorical data
Unordered categories (nominal data)
These can be summarized using the frequencies in each category 
together with either the overall proportions or percentages. The 
choice of whether to use proportions or percentages is a personal one 
although percentages are more commonly seen. The complete set of fre-
quencies is the frequency distribution. An example is given in Table 6.1.

Table 6.1 Type of housing in a sample of women

Housing No. (%)

Owner 899 (62)

Council rent 258 (18)

Private rent 175 (12)

With parents 72 (5.0)

Other 39 (2.7)

Total 1443

Ordered categories (ordinal data)
These can also be summarized by frequencies and percentages as above 
but in addition we can calculate cumulative frequencies and percent-
ages. This can be useful to show the percentage below a certain cut-off. 
An example is given in Table 6.2, which shows the occupational classifi ca-
tion in 1436 women. Note that the percentages do not quite add to 100% 
due to rounding.

Table 6.2 Occupational classifi cation in 1436 women

Occupational 
classifi cation

Frequency % Cumulative 
frequency

%

Professional  115 8.0  115  8.0

Managerial  390 27  505  35

Skilled non-manual  148 10  653  45

Skilled manual  578 40 1231  85

Semi-skilled manual  143 10 1374  95

Unskilled  62 4.3 1436 100

Total 1436

The cumulative percentage is quite useful and here can highlight the 
percentage of women in non-manual occupations: 45%. 
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Cross tabulations
It is often useful to tabulate one categorical variable against another to 
show the proportions or percentages of the categories of one variable by 
the other (for example, see Table 6.3). 

Table 6.3 Incidences of different types of cancer in England by 
gender1

Cancer type Male Female Total

Lung  18 105 (59%)  12 354 (41%)  30 459 (100%)

Breast           0 (0%)  36 939 (100%)  36 939 (100%)

Prostate  29 406 (100%)           0 (0%)  29 406 (100%)

Colorectal  16 103 (54%)  13 448 (46%)  29 551 (100%)

Other  54 191 (51%)  53 075 (49%) 107 266 (100%)

Total 117 805 (50%) 115 816 (50%) 233 621 (100%)

Notes
When categorical data are coded for data analysis with numerical • 
codes these cannot be considered quantitative data and so care is 
needed to analyse such data appropriately
For example, if we had allocated the codes 1, 2, 3, 4, and 5 to the fi ve 
categories of the housing data shown previously, we could calculate 
‘mean housing’ using these numbers but it would of course be 
completely meaningless. Similarly male and female are often coded 1 
and 2, respectively, but again a ‘mean gender’ would make no sense.
Where ordered categorical data have numerical codes, these may be • 
used under some circumstances to test a trend in the data but care is 
needed not to over-interpret the ordering and to gauge an appropriate 
numbering that refl ects the ‘gap’ between categories

Reference
1 Department of Health. Health profi le of England 2007. Section 2 - Snapshot of Health and 

Well-being in England, 8. London, Crown Publications, 2008.



194 CHAPTER 6 Summarizing data

Graphs: histogram, stem and leaf plot
Histogram
This is a diagram which shows the distribution of the data by plotting the 
data in rectangles known as ‘bins’ corresponding to categories along the 
horizontal (x) axis. The rectangles have heights or areas that are propor-
tional to the frequencies in these categories. The vertical (y) scale is the 
frequency per interval (see Fig. 6.2 for an example). 

Note that if the widths of the bins are the same then the height of 
each rectangle is proportional to its frequency, but if they are not the area 
indicates the frequency. It is best where possible to keep the width the 
same for all bins.

Example
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Fig. 6.2 Histogram showing distribution of height in 106 women.
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Stem and leaf plot
A stem and leaf plot is a graph that shows the main features of a set of 
data. In the stem and leaf plot the numbers themselves are used to dem-
onstrate the shape of the distribution. The ‘leaf’ is the fi nal digit of each 
height and the ‘stem’ is all the other numbers. It may be used instead 
of a histogram for small datasets or alongside to show patterns of occur-
rence for certain numbers (see Fig. 6.3).

Example
Figure 6.3 shows a stem and leaf plot for the height data which were dis-
played opposite as a histogram. The fi rst row of the plot below represents 
the value 142 cm, the second represents 147, 148, and 149 cm and so on. 
The plot provides a useful summary of data structure while at the same 
time showing other characteristics such as a tendency for certain trailing 
digits to be more common than others (so called digit preference). We 
can see here that 154 cm and 155 cm both occur twice,  156 cm occurs 
six times, and so on. In some datasets where observers are reporting 
measurements to the nearest 5 or 10, there will be an excess of these 
trailing digits. That does not appear to be the case in these data but is a 
common feature of blood pressure data.

2

7

8

9

1

2

3

4 4

5 5

6 6 6 6 6 6

7 7 7 7

8 8 8 8 8

9 9 9 9

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8

9 9 9

0 0 0 0

2 2 2 2

3 3

5

6

7 7 7 7

2

7

8

9

1

2

3

4 4

5 5

6 6 6 6 6 6

7 7 7 7

8 8 8 8 8

9 9 9 9

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8

9 9 9

0 0 0 0

2 2 2 2

3 3

5

6

7 7 7 7

140

150

160

170

180

H
e
ig

h
t
 (

c
m

)

Fig. 6.3 Stem and leaf plot of height in 106 women.
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Graphs: box and whisker plot, dot plot
Box and whisker plot
A box and whisker plot contains fi ve pieces of summary informa-
tion about the data: 

Median = horizontal line in box• 
Upper quartile = top edge of the box• 
Lower quartile = lower edge of box• 
Maximum = top of ‘whisker’• 
Minimum = bottom of ‘whisker’• 

Example
Figure 6.4 shows the height data from Figure 6.2 split according to occupa-
tion. It illustrates how useful a box and whisker plot can be to display data 
in groups. Note that an outlier is indicated by a separate circle outside the 
plot. This is a height of 142 cm which is quite small, but was found to be a 
correct value and not an error.
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Fig. 6.4 Box and whisker plot showing the distribution of height by occupation in 
106 women (37 non-manual, 69 manual occupations).
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Dot plot
A dot plot is an alternative way of displaying the distribution of a set of 
data and is particularly useful for small datasets where a histogram may 
be uneven. It is also useful for showing the distributions in two or more 
groups side by side. Each value is plotted on the y-axis while the x-axis 
denotes the group.

Example
Figure 6.5 shows the distribution of height by occupation again. The dot 
plot provides an alternative to the box and whisker plot (Fig. 6.4) and has 
the advantage that the actual data points are shown. The disadvantage is 
that summary statistics are not shown as in the box and whisker plot. 
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Fig. 6.5 Dot plots showing the distribution of height by occupation in 106 women 
(37 non-manual, 69 manual occupations).
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Graphs: shapes of distributions
Importance of shape
2 By looking at the shape of a distribution we can learn a lot about a set 
of data in terms of its central values, its extreme values, and where the 
bulk of the data lie. 

Positively skewed data
Many variables follow reasonably symmetrical distributions, such as adult 
height (b Fig. 6.2, p. 194), but some variables commonly encountered 
in medical statistics are skewed. Most of these skewed variables have a 
positive skew, in that the tail on the right-hand side is longer than the tail 
on the left.

Example
Figure 6.6 shows the distribution of alcohol intake among women who 
reported drinking in pregnancy. Most women reported no or low alcohol 
intake and only a small number reported drinking a lot. This gave the 
asymmetrical distribution that seen in the fi gure. 
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Fig. 6.6 A positively skewed distribution: alcohol intake in pregnancy.

Other examples of medical data with a positive skew includes many blood 
indices such as cholesterol, and weight, and blood pressure, where a few 
individuals have very high values, stretching the right-hand tail.
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Negatively skewed data
It is unusual to see negatively skewed data in medical research where 
the longer tail is on the left, but gestational age is one such variable (see 
Fig. 6.7). Gestational age has this shape since the preterm births stretch 
out the lower left-hand tail, and there is a ‘ceiling’ effect at the upper 
end due to the limiting size of the mother/fetus and clinical practice of 
induction beyond 40 weeks. 
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Fig. 6.7 A negatively skewed distribution: gestational age of 1513 babies.

Babies’ birthweight also has a similar negative skewed distribution 
when all live births at all gestations are included. But if preterm births 
are excluded, then the birthweight distribution is reasonably close to a 
Normal distribution.
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Graphs: bar chart, pie chart
Displaying categorical data
Graphs can be used to provide visual summaries of categorical data. The 
two most commonly used are bar charts and pie charts.

Bar charts
In a bar chart, each category is given its own bar along the horizontal (x) 
axis. The height of each bar is proportional to the frequency of observa-
tions. An example is given in Figure 6.8. 

Pie charts
Pie charts show the distribution of individuals in different categories of a 
variable where every individual belongs to one and only one category. In 
a pie chart, each category is given an area (or slice) of the graph (the pie). 
The area of each slice is proportional to the frequency of observations 
within that category and is calculated by dividing the whole pie, 360°, into 
slices. Pie charts enable comparison of proportions in different population 
groups, for example, comparing self-rated health status in Bristol with that 
of the population at large (Fig. 6.9).

Pie charts are only useful where there are three or more categories but 
become hard to read if there are more than 10 categories. A pie chart is 
not needed where there are only two groups, such as when reporting the 
proportion of males and females in a single sample – this information can 
be more usefully stated simply as the proportion of males.

Producing charts
Both bar and pie charts can be easily produced using software packages. 
Many packages will also produce three-dimensional (3D) graphs. We do 
not recommend using these for simple graphs as they can distract from 
the data summary. With pie charts, ‘3D’ imaging can produce a misleading 
graph as the area of the slice is no longer proportional to the number of 
observations in that category. With bar charts it is harder to deduce the 
frequency when the bar is shown in 3D. However, 3D graphs can be very 
useful to show complex mathematical relationships.
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Examples
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Fig. 6.8 Bar chart showing self-reported health in the 2001 census by people living 
in Bristol, England (Offi ce for National Statistics. Census 2001 data. Available from: 
M http://neighbourhood.statistics.gov.uk/).
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Fig. 6.9a,b Pie charts showing self-reported health in Bristol, and in England as a 
whole from the 2001 census.

Notes
The two pie charts shown side by side demonstrate the very similar • 
distributions of responses in the two groups. This is a useful format for 
displaying data in oral presentations. For reports, this information could 
be shown in a table and this would allow more information to be given. 
It can be helpful to show some data alongside the graph as we have in 
the fi rst bar chart.
For further information on displaying data, see the excellent book by • 
Freeman and colleagues, How to display data,1 and examples in Peacock 
and Kerry, Chapter 5.2

References
1 Freeman JV, Walters SJ, Campbell MJ. How to display data. BMJ Books, Blackwell Publishing, 

2008.
2 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.

http://neighbourhood.statistics.gov.uk/
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Summary
Summarizing data can be helpful in checking data quality as well as • 
in presenting fi ndings to others. Simple summaries can help detect 
errors in raw data which would alter fi ndings.
When performing complex statistical analyses, basic summaries • 
should be performed fi rst, as errors may not be so easily spotted 
during advanced tests. In addition, later results are easier to interpret 
alongside basic summary data.
Data can be classifi ed into different types, and the methods for • 
summarizing data vary depending on the type of data
Commonly used summary statistics for quantitative data include • 
mean, median, standard deviation, range, and interquartile range. For 
skewed data, other statistics may be required.
Categorical data can be graphically presented using histograms, • 
box plots, stem and leaf plots, and dot plots. These can all be easily 
produced with statistical computer packages.
Categorical data may be graphically presented using bar charts and • 
pie charts
The best method for presenting summary statistics can depend on • 
the setting. A chart may be best for a presentation, whereas a table 
may be more appropriate in a written report.
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Probability and 
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Normal distribution: percentage points 226
Central limit theorem 228
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Introduction
Probability and probability distributions play a central part in medical sta-
tistics. In this chapter we defi ne what we mean by probability and describe 
the rules by which probabilities are combined. We then describe how 
the use of probability leads to the concept of a probability distribution 
and show how these distributions are used in medical statistics. We give 
examples of the use of key distributions: the Normal distribution, the 
Binomial distribution and the Poisson distribution. 
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Independence: data and variables
Introduction
We have previously defi ned a ‘variable’ as a quantity that is measured or 
observed in an individual subject and which varies from subject to subject 
(b Types of data, p. 176). For this reason, in statistics we sometimes call 
these ‘random variables’. We have shown in Chapter 6 how to summa-
rize variables using various summary statistics, such as means and propor-
tion; the choice of statistic depends on the type of data and the purpose 
of the data summary. 

Independent data
The notion of data points being independent or not is important in medical 
statistics. Many statistical procedures assume that the data points in a 
sample are independent of each other. If two values are independent then 
this means that knowing something about one value tells us nothing about 
the other. In some situations it is straightforward to determine whether 
or not data are independent but in others it is not so easy.

Examples

1. We have a set of height measurements on a sample of children 
attending a hospital clinic. These heights will be independent of 
each other, assuming the children are not related to each other.

2. We have a series of height measurements over 5 years on the same 
sample of children. Within each child, the measurements will not be 
independent of each other because knowing one measurement 
for a particular child will give us some information about another 
measurement on the same child: any two measurements in a child 
will be closely related to each other.

3. We have a set of heights of mothers of all children born in a 
particular maternity unit over 5 years. These data may not be totally 
independent if some women had more than one pregnancy during 
the time period and were included more than once.

Independence matters
0 The concept of independence is not just esoteric – if we treat data as 
if they are independent when they are not we may make incorrect 
statistical inferences.

In example 3, if shorter women tended to have more babies than taller 
women, then the overall mean height based on the mothers of all babies 
would be smaller than it should be because some shorter women would 
be included more than once. In general it is important to take any data 
dependence into account when designing and analysing data.

Examples of designs with intrinsic non-independence 
Serial measures•  within individuals, for example, growth studies where 
we have regular measurements of height and weight in a group of children 
over time. In such cases we must take the non-independence into 
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account when we analyse these data (b Serial (longitudinal) data, 
p. 378)
Clustered studies • where individuals fall naturally into groups or 
clusters, such as all patients in a particular general practice where the 
general practice is the cluster. An example is a cluster trial where 
clusters of individuals are randomly allocated to treatments so that 
everyone in a cluster receives the same treatment. 2 It is essential 
to take the ‘clustering’ into account in such studies (b Cluster 
samples, pp. 388–392)

Independent variables
Two variables measured within a sample of individuals may be related 
to each other and so are not independent. In fact it is often the case 
that variables are related to each other and we use this in medical 
research to test hypotheses and determine risk factors for disease.

Suppose we wish to determine if one variable, the amount of exercise 
an individual takes, is related to their weight. If exercise and weight are 
found to be related, i.e. not independent, we may decide to investigate 
whether increasing the amount of exercise taken might reduce weight.

0 Note that when doing a regression analysis, the terms ‘dependent’ 
and ‘independent’ variables are sometimes used in a different sense to 
describe the outcome and explanatory variables used in a statistical 
model (b Simple linear regression, p. 296).
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Probability: defi nitions
Why probability is important in medical statistics
The theory of statistics is based on probability theory which was origi-
nally used to investigate patterns in gambling games using cards and dice. 
The theory of statistics underpins medical statistics and probability theory 
enables us to answer questions in medical research.

Samples and populations
In medical research we often use a sample of individuals rather than the 
entire population of interest because it is too expensive or is simply not 
possible to include the whole population. When we do this we use results 
from the sample to draw conclusions about the whole population. 

Example
Suppose in a clinical trial we fi nd that a sample of patients allocated to a 
new drug do better on average than those allocated to an old one: 

Is this a real effect?• 
Is the observed difference simply due to random variation? • 
In other words, to what extent is the observed effect likely to be • 
typical of what would happen in other patient groups? 
Whenever we use a sample to infer something about a population, there 

is always a degree of uncertainty attached to the fi ndings. Probability 
theory is used to measure this uncertainty and to help to draw conclusions 
from the sample study (b Samples and populations, p. 240).

Defi nition of probability (frequency defi nition)
The proportion of times an event happens in the long run which can • 
be estimated from a proportion calculated in a sample 

For example, the proportion of stillbirths out of total births in England 
and Wales in 2006 was 3602/673 203 = 0.0054. Since this was a census 
and  therefore a large sample, we can use this as an estimate of the 
probability that a baby born in England and Wales will be stillborn.1
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Jargon
In statistics we talk about each occurrence of the event of interest as the 
event. So in the example of the probability of a stillbirth, the event is a 
stillbirth. 

The probability of an event is sometimes called the probability of 
success and the total number of ‘tries’ in which the event could happen is 
known as the sample size, n (sometimes called the number of trials). So 
for the stillbirth data, the sample size is the total number of live births and 
stillbirths (673 203 in the example).

An alternative defi nition of probability
In the defi nition just given, probability is interpreted as a relative fre-
quency. The advantage of this is that is usually enables us to estimate 
probabilities in an objective way.  However, this is not always possible and 
there is a different interpretation of probability as a degree of belief. This 
is more subjective, but it is what we commonly do in everyday life: the 
statement ‘I think it’s as likely as not to rain today’ implies a 50:50 chance 
of rain which, if based on observing the current weather, is a subjective 
judgement. 

In some situations we do have some prior knowledge about the 
likelihood of an event and, as long as it can be quantifi ed, it is possible 
to combine the prior belief with frequency data to give an updated and 
arguably better estimate of the probability. 

This way of thinking can be illustrated when we apply Bayes’ theorem 
to diagnostic data and use the prevalence and sensitivity to give the 
positive predictive value (b Bayes’ theorem, p. 234; likelihood ratios, pre-
test odds, post test odds, p. 346). Further application using distributions 
of degrees of belief to modify data gives rise to the body of statistical 
methods known as Bayesian statistics (b Chapter 14 p. 477).

Reference
1 Offi ce for National Statistics. Birth statistics 2006 series FM1 No 35. 2007. Available from: 

M www.statistics.gov.uk/STATBASE/Product.asp?vlnk=5768 (accessed 6 Jan 2009). 

www.statistics.gov.uk/STATBASE/Product.asp?vlnk=5768
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Probability: properties
Three basic rules of probabilities
1. A probability must lie between 0 and 1 inclusive
2. If two events are mutually exclusive so that they cannot both 

happen, the probability of either happening is the sum of the 
individual probabilities

3. If two events are independent then the probability of both occurring 
is the product of the individual probabilities

Interpretation of the properties
1. If a probability is 0 then the event never happens. 

If it is 1, the event always happens.
2. If two events are mutually exclusive then only one can happen. 

For example death and survival are mutually exclusive – a patient 
cannot both survive and die at the same time.

3. If two events are independent then the fact that one has happened 
does not affect the chance of the other event happening. 
For example the probability that a pregnant woman gives birth to twins 
(event 1) and the probability of a white Christmas (event 2). These two 
events are unconnected since the probability of giving birth to twins is 
not related to the weather at Christmas.



209PROBABILITY: PROPERTIES

Examples using coin tossing
Tossing coins is often used to illustrate probability and we will do the 
same here. We will use the shorthand notation Pr(H) to denote the prob-
ability of a head and Pr(T) as the probability of a tail. 

Tossing one coin
If we toss a fair coin then it can either come up heads (H) or tails (T). If 
we toss the same coin several times we will get some heads and some 
tails. If we toss it many times we will get a similar number of heads as tails, 
because it is a fair coin. 

Hence we can say that the probability of a head is ½ or 0.5,

i.e. Pr(H) = Pr(T) = 0.5

Tossing two coins
If we toss two coins there are four possible outcomes: HH, HT, TH, 
and TT. The four possible outcomes are all equally likely so the prob-
ability is ¼ (or 0.25) for each. Each toss of the coin is independent and so 
the outcome for the fi rst coin toss does not affect the outcome for the 
second coin toss. Hence we can use the rules of probability stated above 
to calculate the following:

Pr(HH) = Pr(H and H) = Pr(H) Pr(H) using rule 3

= ½ x ½ = ¼
Now what is the probability of getting one head? There are two different 
ways of getting one head, either TH or HT, each happening with prob-
ability ¼. So using rule 2 (as TH and HT are mutually exclusive):

Pr(1 Head) = Pr(TH or HT) = Pr(TH) + Pr(HT)

= ¼ + ¼ = ½
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Probability distributions
Introduction
A probability distribution is a set of exclusive events that includes 
all events that can happen. The sum of probabilities is therefore equal 
to 1 and the set of all possible probabilities make up a probability 
distribution.

From fi rst coin tossing example
When we toss one coin (b Tossing one coin, p. 209), we get either H 
with probability ½ or T with probability ½. 

Suppose X is the number of heads in one toss of a coin. X can take the 
value 0 or 1 and Pr(X=0) = ½, Pr(X=1) = ½.

This is a simple probability distribution and can be depicted on a graph 
(Fig. 7.1).
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Fig. 7.1 Distribution of the number of heads in one toss of a coin.

From the second coin tossing example
If we toss two coins  (b Tossing two coins, p. 209), there are four pos-
sible outcomes, HH, HT, TH, and TT, each occurring with probability ¼.

If Y is the number of heads, then:

Pr(Y=0) = ¼
Pr(Y=1) = ¼ + ¼ = ½
Pr(Y=2) = ¼

This too is a probability distribution which can be depicted as shown in 
Figure 7.2.
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Fig. 7.2 Distribution of the number of heads in two tosses of a coin.

Note that this probability distribution is discrete since the number of 
heads is a count. Each possible value of the number of heads is associated 
with a particular probability, and is shown as a vertical line. As the 
number of coin tosses increases, there are more lines and the binomial 
distribution begins to take a stronger shape as can be seen in Figure 7.3 
for the distribution of the number of heads out of four coin tosses where 
there are 16 possible arrangements.
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Fig. 7.3 Distribution of the number of heads in four tosses of a coin.
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Binomial distribution: formula
Calculations
As the number of coin tosses increases it becomes diffi cult to list all 
the possible arrangements and so instead we can use a formula for the 
Binomial distribution, given below. This allows us to calculate the prob-
ability of any particular value of the number of successes (events) as long 
as we know the probability of success and the total sample size, n. 

Binomial formula

Pr(r events out of n) =
 

n
pr n r!

( )n r ! !r
( )pp −

Where:

n is the sample size (i.e. number of coin tosses, number of people 
studied etc), r is the number of successes, p is the probability of success 

n! is n  (n–1)  (n–2) … 2  1 (e.g. 6! = 6x5x4x3x2x1 = 720, b Example: 
the two parts of the formula, p. 215)

To show that the formula ‘works’, it is used for the coin tossing example 
with two coins (Example 1) and then in a more practical example 
(Example 2). 

Example 1: tossing two coins

Using the formula above to calculate the probability of getting one head 
from two coins tosses: n = 2, r = 1, p = 0.5. The probability of 1 head is:

=
−

=

−2!
(2 1)!1!

0.5 (1 0− .5)5

2 1
1 1

0.5 0.5

1 2(1 0 5)5 1

=  2 x 0.25 = 0.5 as before when calculating by hand
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Example 2: probability of surviving

Suppose the probability of surviving from a particular disease is 0.9 and 
there are 20 patients. The number surviving will follow a Binomial distri-
bution with p=0.9 and n=20. What is the probability that no more than 
1 patient dies? 

This will occur if either none die (all survive) or only one dies (19 
survive). This can be calculated as follows: 
Probability all survive is Pr(r =20), calculated using the Binomial formula:

=

=

= =

−20
0 1 0−

20
0

0 9 0 1

0 9 0

20 20 20

20 0

20

!
( )−20 20 ! !20

. (920 . )9

!
! !20

. .9 0

. .9 0.1.. 2

Now we can calculate the probability that 19 survive, Pr(r=19):

=

=

= ×

−20
0 1 0−

20
1

0 9 0 1

20 0 9

19 20 19

19 1

1

!
( )−20 19 ! !19

. (919 . )9

!
! !19

. .9 0

99 0 1 0 27× =0 1. .1 01

If no more than 1 dies then either all 20 survive or 19 survive. The 
probability of this is found by adding the two separate probabilities:

Pr(20 survive) + Pr(19 survive)

= 0.12 + 0.27 = 0.39

Note that 0! =1 (b Binomial distribution: derivation, p. 214)
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Binomial distribution: derivation
Where the formula comes from
There are two parts to the formula: 

(i) The fi rst part:

n
r n r

!
!( ) !−

This is a standard formula for the number of arrangements of r things out 
of n.

(ii) The second part

pr(1–p)n–r

This is the probability for each individual arrangement of r successes and 
n–r failures.

Hence the total probability is this probability multiplied by the number 
of arrangements.

Values of p
In the coin tossing example (b Example 1, p. 212), p was 0.5 because 
we assumed that heads and tails were equally likely. But any value of 
p between 0 and 1 can be used in the formula as b Example 2, p. 213, 
showed with a survival probability of 0.9. 

Note that no matter what the value of p, the total probability of 
r successes out of n is the always the same as the probability of n–r  
failures.

Factorials n!
The mathematical expression n! is called ‘factorial n’ and is the product of 
all integers between 1 and n.

So 5! = 5 x 4 x 3 x 2 x 1

1! is clearly equal to one. Mathematicians make an exception for 0! by 
defi ning it as one, so 0! =1.
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Example: the two parts of the formula

When tossing two coins we saw that there were two possible ways of 
getting one head –  HT or TH 

Using the formula, where n=2, r=1 we get the same answer:

2
1 2 1

2 1
1 1

2
!

!( ) !−
= =

As we were able to list all four possible combinations of H and T, we 
could deduce the probability of any one combination as ¼ and so we 
calculated that the probability of one head was 2 x ¼ = ½.

We see that the formula gives the same answer for the probability of 
any one arrangement of one head:

0.51 x (1–0.5)2-1 = 0.5 x 0.5 = 0.25 or ¼



216 CHAPTER 7 Probability and distributions

Poisson distribution
Introduction
The Poisson distribution is used widely in statistics for count data and is 
therefore a discrete distribution. It is used to describe the distribution 
of counts of events, such as when specifi c events happen randomly in time 
or when small particles are distributed randomly in space. It assumes that 
the underlying rate is constant. 

Example

New cases of disease often happen randomly and the Poisson distribu-
tion can be used to compare the counts in a period of time in two or 
more groups, or to model risk factors for the disease (see b Example 
of use of Poisson distribution, p. 219, for an example where the risk for 
lung cancer was modelled using the Poisson distribution).

Formula
If the mean number of events that happen in a single period of time is m 
then the probability of r events in a single period of time is:

Pr(r events in a single period of time ) = 
e m

r

m rm−

!
 

where e–m  is the exponential function

Examples of calculations with m=2

Pr(0 events) = • 
e

e
−

−= =e
2 0

22
0

0 135
!

. (to 3 decimal places)

Pr(1 event) = • 
e

e x
−

−= e x
2 1

22
1

2 0= 271
!

. (to 3 decimal places)

The Poisson distribution with different means
As with the Binomial distribution, the Poisson distribution takes a different 
shape with different values of its parameter, the mean number of events. 
We illustrate this in Figure 7.4 with three Poisson distributions with means 
1, 5, and 25. 
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Fig. 7.4a–c Poisson distributions with means 1, 5, and 25.
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Poisson distribution (continued)
Where the Poisson distribution does not hold

If the events do not happen randomly or the mean number of events • 
is not constant, then the Poisson distribution does not fi t. 
For example when counting cells in a volume of blood the Poisson 
distribution will only apply if the cells are evenly distributed, i.e. the 
blood sample is well stirred 
We can make use of deviations from the Poisson distribution as a • 
test of randomness. For example, in monitoring death rates where 
a fl uctuation in rates may indicate the infl uence of an external factor 
that needs further investigation. We can test that data follow a Poisson 
distribution using a goodness of fi t test (b Chi-squared goodness of 
fi t test, p. 364).

Mean and variance
The mean of the Poisson distribution is denoted by m, the mean number 
of events in single unit time or space. It turns out that the variance of 
a Poisson distribution is also m. Thus the Poisson distribution is charac-
terized by only one parameter, the mean, unlike the Binomial, which is 
characterized by two parameters: p (probability of success) and n (sample 
size). 

Relationship to the Normal distribution
In the next section the Normal distribution, a continuous distribution, will 
be described. Under certain conditions, the Poisson and the Binomial 
distributions can be approximated by the Normal distribution, 
which simplifi es the calculation of probabilities and is used in signifi cance 
tests (b Chapter 8, p. 237).
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Example of use of Poisson distribution

A multiethnic cohort study in California and Hawaii, USA, investigated 
differences in the risk of lung cancer associated with cigarette smoking 
among 183 813 African American, Japanese American, Latino, Native 
Hawaiian, and white men and women.1 

The study assumed that lung cancer rates followed a Poisson 
distribution. The authors fi tted a Poisson regression model in order to 
estimate the risk of lung cancer among subjects who had never smoked, 
former smokers, and current smokers, taking into account age, duration 
and quantity of smoking, sex, ethnic group, occupation, education, and 
diet. 

The results showed that there were statistically signifi cant differences 
in lung cancer risk by ethnic group among lighter smokers (<30 
cigarettes per day) with higher risk among the African American and 
Native Hawaiian cohorts. There was no evidence for ethnic differences 
for those smoking more than 30 cigarettes per day. 

(For more details on Poisson regression see b Poisson regression, 
p. 432).

Reference
1 Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE et al. Ethnic and racial 

differences in the smoking-related risk of lung cancer. N Engl J Med 2006; 354(4):333–42.
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Continuous probability distributions
Introduction
The Binomial and Poisson distributions are discrete distributions fol-
lowed by discrete variables that can only take a limited set of values. 
Continuous probability distributions are distributions that can take any 
value between given limits. If we consider a histogram of a continuous 
variable then we can imagine making the intervals, ‘bins’, on the x-axis 
smaller and smaller. The histogram of the data would then begin to look 
like a smooth curve – the probability density (see Fig. 7.5).
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Fig. 7.5a–d Histograms with 10, 20, 30, 100 bins.

Interpreting a continuous probability distribution
There are an infi nite number of  possible values for a continuous • 
variable and the probability of any specifi c value is zero
The height of the frequency curve cannot then be taken as the • 
probability of a particular value
Probabilities are determined by measuring the • area under the curve 
between two values 
Since the whole curve represents all possible values, the total area • 
under the curve equals one
For example, the area to the left of the mean for a symmetrical • 
distribution is 0.5, i.e. the probability of a value less than the mean is 0.5
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Normal distribution
Introduction
The Normal distribution is a continuous probability distribution that has 
a symmetrical bell-shape (See Fig. 7.6). The Normal distribution is charac-
terized by the following mathematical function:

y
x= −⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1

2 2

2

π
exp

where x is the co-ordinate on the x-axis and y is the probability density. 
However, the formula is not needed in everyday use since tables or 
computers are available for calculations (b Normal distribution: cal-
culating probabilities, p. 224). The important things to know about a 
Normal distribution are its mean and standard deviation which uniquely 
characterize it.
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Fig. 7.6 The Standard Normal distribution.

Different Normal distributions
There are an infi nite number of  possible Normal distributions depending 
on the mean and standard deviation in a specifi c situation.  However, any 
Normal distribution can be converted into a standard format, the Standard 
Normal distribution, which has mean=0 and standard deviation=1 as 
shown below.
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Converting to the Standard Normal distribution
Any position along the x-axis can be expressed as a number of • 
standard deviations (+ or −) from the mean. This distance is the 
Standard Normal deviate (SND) or Normal score. 
Any Normal distribution can be therefore converted to the Standard • 
Normal distribution by subtracting the mean from each observation 
and dividing by the standard deviation, ie 

Standard Normal deviate (Normal score)

x – –x

  SD

where x is the observation, –x is the mean and SD is the standard deviation

Normally distributed variables
Many biomedical variables are Normally distributed, such as height and • 
peak fl ow rate
However, some common variables are not Normal, such as weight, • 
serum cholesterol and blood pressure, which are skew 
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Normal distribution: calculating 
probabilities 
Introduction
Probabilities are obtained by calculating the area under the Normal dis-
tribution curve between two values. This requires the use of calculus and 
can be done using a statistical package or a special table, such as Table 7.1. 
To calculate probabilities we need to know the mean and standard devia-
tion of the Normal distribution that we are using.

Tables of the Standard Normal distribution
Table 7.1 gives the probability for a value less than x for values of x from 
–3 to +3. So we can see, for example, that the probability that a value 
less than 0 is 0.5, and the probability that a value less than –2.0 is 0.023. 
This table assumes that we are using a Standard Normal Distribution, 
i.e. mean=0 and SD=1. It is the area to the left of x as shown shaded in 
Figure 7.7.
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Fig. 7.7 The Standard Normal distribution showing the area in the tail.
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Table 7.1 Probabilities for the Standard Normal distribution

X Probability x Probability

–3.0 0.001 0.1 0.540

–2.9 0.002 0.2 0.579

–2.8 0.003 0.3 0.618

–2.7 0.003 0.4 0.655

–2.6 0.005 0.5 0.691

–2.5 0.006 0.6 0.726

–2.4 0.008 0.7 0.758

–2.3 0.011 0.8 0.788

–2.2 0.014 0.9 0.816

–2.1 0.018 1.0 0.841

–2.0 0.023 1.1 0.864

–1.9 0.029 1.2 0.885

–1.8 0.036 1.3 0.903

–1.7 0.045 1.4 0.919

–1.6 0.055 1.5 0.933

–1.5 0.067 1.6 0.945

–1.4 0.081 1.7 0.955

–1.3 0.097 1.8 0.964

–1.2 0.115 1.9 0.971

–1.1 0.136 2.0 0.977

–1.0 0.159 2.1 0.982

–0.9 0.184 2.2 0.986

–0.8 0.212 2.3 0.989

–0.7 0.242 2.4 0.992

–0.6 0.274 2.5 0.994

–0.5 0.309 2.6 0.995

–0.4 0.345 2.7 0.997

–0.3 0.382 2.8 0.997

–0.2 0.421 2.9 0.998

–0.1 0.460 3.0 0.999

 0.0 0.500

Using the table
The table is symmetrical due to the symmetry of the distribution• 
To fi nd the probability of a value lying between two points • a and 
b, where b>a, we fi nd Pr(x<b) – Pr(x<a), e.g., probability that x lies 
between 1.5 and 2.0 is given by: 
Pr(x<2.0) – Pr(x<1.5) = 0.977 – 0.933 = 0.044
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Normal distribution: percentage points
The Normal distribution is also tabulated using percentage points. The 
one-sided p percentage point of the distribution is the value x such 
that there is a probability p% of an observation greater than or equal to 
x. Similarly, the two-sided p percentage point is the value x such that 
there is a probability p% of an observation being greater than or equal to x 
or less than or equal to –x. Table 7.2 shows these percentage points.

Table 7.2 Percentage points of the Standard Normal distribution

One-sided Two-sided

Percentage x Percentage x

50 0.00

25 0.67 50 0.67

10 1.28

5 1.64 10 1.64

2.5 1.96  5 1.96

1 2.33 

0.5 2.58  1 2.58

0.1 3.09

0.05 3.29 0.1 3.29

Example

The histogram in Figure 7.8 shows the distribution of birthweight among 
1400 women who gave birth to term babies. The sample mean was 
3397 g and the standard deviation was 445 g. The fi gure also shows the 
corresponding Normal curve, i.e. the Normal distribution with the same 
mean and standard deviation as this set of data. Since the Normal curve 
is a close fi t to the data, it is reasonable to assume that the data follow a 
Normal distribution and use the Normal distribution to calculate some 
useful quantities.
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Fig. 7.8 Histogram of the data with corresponding Normal curve.

Calculations

1. Probability of a birthweight less than 2500 g:

To do this we fi rst calculate the Standard Normal deviate (b Converting 
to the Standard Normal distribution, p. 223): 

2500–3397 = –897 = –2.02
    445            445

The probability of a value less than –2.02 is 0.0217 and so we estimate 
that approximately 2.2% of term births are below 2500 g.

2. Calculate the central range:

90% of a Normal distribution lies within the range, mean ± 1.64 standard 
deviations (SD), 95% within mean ± 1.96 SD and 99% within mean 
± 2.58 SD. 

For the birthweight data we get the following ranges:

90% 2667 to 4127

95% 2525 to 4269

99% 2249 to 4545

Thus we can use the Normal distribution to estimate centiles of the 
distribution of birthweight among this population of term births.
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Central limit theorem
What is the central limit theorem?
The central limit theorem is a very important mathematical theorem that 
links the Normal distribution with other distributions in a unique and 
surprising way and is therefore very useful in statistics. 

The sum of a large number of independent random variables will • 
follow an approximately Normal distribution irrespective of their 
underlying distributions
This means that any random variable which can be regarded as the • 
sum of a large number of small, independent contributions is likely to 
follow the Normal distribution

Consequences of the central limit theorem
Binomial distribution:

The Normal distribution can be used as an approximation to the • 
Binomial distribution when n is large
In practice • this works if np and n(1–p) are both greater than 5 
(where np and n(1–p) are number of successes and number of failures)

Poisson distribution:
The Normal distribution can be used as an approximation to the • 
Poisson distribution as the mean of the Poisson distribution 
increases
In practice • this works when the mean is greater than 10

Advantages of using the Normal distribution
The main advantage in using the Normal rather than the Binomial or the 
Poisson distribution is that it makes it easier to calculate probabilities and 
confi dence intervals (b Chapter 8, p. 237).
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Central limit theorem (continued)
Illustrations: Binomial distribution
We can see from the histograms of the Binomial distribution with p=0.5 
(Fig. 7.9) that as n increases from 1 to 2 to 4, that the Binomial distribu-
tion becomes more symmetrical and more closely resembles the Normal 
distribution.
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Illustrations: Poisson distribution
In a similar way, the histograms in Figure 7.10 show that as the Poisson 
mean increases from 1 to 5 and then to 25, the distribution becomes 
more symmetrical and looks more like the Normal distribution.
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Other distributions: t, chi-squared, F, 
etc.
There are many other probability distributions used in statistics. Below 
we list those  that are more commonly used. We give brief details of each 
with examples of how they are used and what they look like. 

t distribution
The t distribution plays an important role in statistics as the sampling dis-
tribution of the sample mean divided by its standard error and is used in 
signifi cance testing (b Tests of statistical signifi cance, p. 246). The shape 
is symmetrical about the mean value, and is similar to the Normal dis-
tribution but with a higher peak and longer tails to take account of the 
reduced precision in smaller samples. The exact shape is determined by 
the mean and variance plus the degrees of freedom. As the degrees of 
freedom increase, the shape becomes closer to the Normal distribution 
and when the sample is greater than 30, the t distribution is very similar 
to the Normal.

Chi-squared distribution
The chi-squared distribution also plays an important role in statistics. If 
we take several variables, say n, which each follow a standard Normal 
distribution, and square each and add them, the sum of these will follow a 
chi-squared distribution with n degrees of freedom. This theoretical result 
is very useful and widely used in statistical testing, particularly the chi-
squared test (b Chi-squared test, p. 262). The chi-squared distribution 
is always positive and its shape is uniquely determined by the degrees of 
freedom. The distribution becomes more symmetrical as the degrees of 
freedom increases. 

F distribution
This is the distribution of the ratio of two chi-squared distributions and is 
used in hypothesis testing when we want to compare variances, such as in 
doing analysis of variance (b One-way analysis of variance, p. 280). It is 
always positive, but the exact shape depends on the degrees of freedom 
for the two chi-squared distributions that determine it. 

Uniform distribution
The uniform distribution has a rectangular shape so that each possible 
value occurs with equal probability within a given range. It can be useful 
in Bayesian analysis as the prior distribution of an unknown parameter 
where all values within a given range are thought to be equally likely 
(b Prior distributions, p. 482).
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Lognormal distribution
Sometimes data may follow a positively skewed distribution which 
becomes a Normal distribution when each data point is log-transformed 
(using logarithms to base e). In this case the original data can be said to 
follow a lognormal distribution. The transformation of such data from log-
normal to Normal is very useful in allowing skewed data to be analysed 
using methods based on the Normal distribution since these are usually 
more powerful than alternative methods (b Transforming data, p. 330).

Other distributions
Other distribution used by statisticians and which may be referred to in 
research articles are listed below. The full details of these distributions are 
beyond the scope of this book. Some are forms of other distributions that 
we have already discussed:

Half-Normal distribution – Normal distribution with mean 0, cut at • 
zero
Bivariate Normal distribution – distribution followed jointly by two • 
Normal variables
Negative binomial distribution• 
Beta distribution• 
Gamma distribution • 

Summary: general features of probability distributions

Probability distributions
Underpin many of the methods and tests used in medical statistics• 
Are used to calculate probabilities• 
Have a shape which is uniquely defi ned by specifi c parameters such • 
as the mean, variance, sample size and degrees of freedom

Further reading
Further details of probability and probability distributions can be found in 
Bland, Chapter 6,1 and Armitage, Chapter2.2

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Oxford: 

Blackwell Science, 2002.
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Bayes’ theorem
Conditional probability
A conditional probability is a probability of one event happening given 
that another event has also happened. For example, we may wish to know 
the probability that a patient has a particular disease given that they have 
a positive result on a diagnostic test. This conditional probability can be 
calculated using Bayes’ theorem. 

Note that it is not the same as the underlying probability of having the 
disease and neither is it the same as the probability of a patient getting a 
positive test result if they have the disease. We give some examples here. 

Bayes’ theorem
Bayes’ theorem enables us to reverse conditional probabilities and under-
pins the Bayesian statistical methods described in b Chapter 14, p. 477). 

Notation:
We have two events • A and B
Pr(AIB)•  means ‘the probability of A happening given that B has already 
happened’. This is often shortened to ‘the probability of A given B’ 

Bayes’ theorem formula

Pr( | )
Pr( | ) Pr( )

Pr( )
B|

A| APr(=

0 The probability of A given B, Pr(A|B), is NOT the same as the prob-
ability of B given A, Pr(B|A), unless Pr(A)=Pr(B). 
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Example: conditional probabilities and court cases

Conditional probabilities are sometimes used in court cases but not 
always correctly. People tend to assume that just because those found 
guilty of a particular crime in the past tend to have a particular charac-
teristic, then anyone subsequently arrested and who has that character-
istic, must therefore be guilty. 

The incorrect logic is shown in this hypothetical scenario:
House burglars are often small and agile, but if a suspect is small and 
agile, then he is not necessarily guilty on that basis alone. Many people are 
small and agile, but only a small proportion of small agile people are house 
burglars.

Example: conditional probabilities and diagnostic testing

Bayes’ theorem can be used to calculate the conditional probability that 
a patient with a positive result on a diagnostic test really has the disease. 
(For more details of diagnostic tests, sensitivity and specifi city, positive 
and negative predictive value, see b Chapter 9 p. 339).

A study investigated a new D-dimer test for the diagnosis of venous 
thromboembolism (VTE):1 
The sensitivity was found to be 0.79
The prevalence of VTE among those studied (VTE+) was 0.14
The probability of getting a positive test (D+) was 0.32

Therefore the probability of VTE given a positive test is:

Pr( | )
Pr( | ) Pr( )

Pr( )
D|

V| TE VTETT+D| = +V| TE +

= sensitivity p×t revalencecc
probability of positive test

= = =0 79 0× 14
0 32

0 346 34 6
. .79 0×

. .346 34 %

This probability is the positive predictive value of the test.

Reference
1 Kovacs MJ, Mackinnon KM, Anderson D, O’Rourke K, Keeney M, Kearon C et al. A comparison 

of three rapid D-dimer methods for the diagnosis of venous thromboembolism. Br J Haematol 
2001; 115(1):140–4.
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Introduction
Statistical tests are widely used to evaluate numerical evidence. In this 
chapter we discuss the rationale behind statistical tests and explain how 
estimates, P values, and confi dence intervals are used to make inferences 
about a population using sample data in a variety of situations. All statis-
tical tests and methods are described in terms of when to use them, what 
assumptions are involved, and how the results can be presented and inter-
preted. Formulae are given for the most common simple tests to allow 
the reader to do the tests themselves and to understand the mathematics 
behind them should they wish. More complex statistical methods and tests 
are included largely without formulae. The emphasis is on the correct use 
of statistics and the interpretation of statistical results. All methods are 
illustrated with examples and references are given for further details.
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Samples and populations
Introduction
In research studies it is common to wish to draw general conclusions 
from a relatively small amount of data. We often have only a subset or 
sample (Fig. 8.1) of the whole population that we are really interested in. 
This is usually because it is impractical or impossible to study the whole 
population. If we are answering specifi c questions or hypotheses then the 
answers will tell us something about the whole population but, because 
we only have a sample, the answer will be imprecise in some sense. In 
other words data collected from the sample will never be able to provide 
full information about the whole population.

Fig. 8.1 Drawing a sample from a larger population.

Dealing with uncertainty
There will always be an element of uncertainty when we do not have ‘all’ 
of the data. Statistical methods based on probability theory are therefore 
used to quantify this uncertainty:

If we are estimating some quantity from our data, for example, the • 
proportion of patients who have a particular attribute, then we can 
quantify the imprecision in the estimate using a confi dence interval
If we are testing a hypothesis, for example, comparing blood pressure • 
in two groups, then we can do a statistical signifi cance test which 
helps us to weigh the evidence that the sample difference we have 
observed is in fact a real difference 
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Sampling distributions
The concept of a distribution for individual values can be extended to the 
hypothetical situation where there are different samples all taken from the 
same population. If we select one sample from a population and calcu-
late the mean value, then the sample mean will provide some information 
about the overall mean in the population.

Sampling distribution of the mean
In general, different samples from the same population will give different 
means and so when we only choose one sample, as we usually do, we 
get only one of a range of possible means. Hence in a theoretical way 
we can imagine that if we looked at all possible samples and calculated 
their sample means, then we could look at the distribution of these 
sample means. This distribution is called the sampling distribution of 
the mean.

These sampling distributions are interpreted in a similar way to data 
distributions: values of sample means close to the overall population mean 
are more likely (more common) than extreme values.

Summary points
Sample data are used to draw conclusions about populations• 
Sample data are imprecise – estimates vary from sample to sample• 
Statistical tests and confi dence intervals allow us to take the • 
imprecision into account
Note that statistical analysis, however, sophisticated, cannot correct • 
poor study design
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Confi dence interval for a mean
Standard error of the mean
Suppose we selected many samples, then the sample means would 
follow a distribution known as the sampling distribution of the mean. 
We could calculate the mean of these sample means, and the standard 
deviation. The standard deviation of the sample means is known as the 
standard error of the mean and provides an estimate of the precision 
of the sample mean.

Standard error of the sample mean SE (mean)

SD

n

where SD is the standard deviation for the data and n is the sample size

Note as n increases, SE decreases and so precision is greater for 
larger samples

The standard error of the mean is sometimes denoted by ‘se’ or ‘SE’, 
or ‘SEM’. The derivation of this can be found in Bland, Chapter 8.1 If the 
samples are large then the sample means will follow a Normal distribution 
because of the central limit theorem (b Central limit theorem, p. 228). 
Therefore we can use the Normal distribution to calculate a range of pos-
sible values for the true population mean. The 95% confi dence interval is 
calculated using the formula below. The derivation of this formula can be 
found in Bland, Chapter 8.1

95% confi dence interval for a mean from a large sample

mean – 1.96 SE (mean) to mean + 1.96 SE (mean)

Choice of percentage for confi dence intervals (CI)
95% is the most commonly used percentage for CIs and the multiplier • 
is 1.96 for large samples (b What is a large sample, p. 244)
Other percentages can be used such as 90% or 99%• 
90% CI has a probability of 90% of containing the true value and uses • 
the multiplier 1.64 rather than 1.96
99% CI has a probability of 99% of containing the true value and uses • 
the multiplier 2.58
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How to interpret the 95% confi dence interval (95% CI)
A 95% CI is a range of values which has a 95% probability of • 
containing the true population value in the sense that if an infi nite 
number of samples were drawn to estimate the value of interest, 95% 
of their 95% CIs would contain the true population value
In other words, we have 95% confi dence that the true value in the • 
population from which the sample was taken lies within the 95% CI
Hence a 95% CI is a margin of error around the estimate that • 
indicates how precise the estimate is.

Example

Suppose we have a sample of 1513 babies and we calculate their mean 
birthweight:
Mean = 3325g
SD = 528g

95% CI given by:

mean – 1.96 SE (mean) to mean + 1.96 SE(mean)

3325 1 96
528

1513
3325 1 96

528

1513
− ×1 96 + ×1 96.3325 1.96 ×96 +1   to   

3298 to 3352
Hence from these data we can be 95% confi dent that the population 
mean birthweight lies between 3298 g and 3352 g

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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95% confi dence interval for a 
proportion
Standard error of a proportion
As the sample size increases, the sampling distribution of any estimated 
quantity is Normal. This property is used to calculate confi dence intervals 
for means and other estimates. Using this we can calculate the standard 
error of a proportion and then estimate the 95% confi dence interval for a 
sample proportion. Suppose a certain proportion in the population has a 
condition. If we have n individuals altogether and r with the condition then 
we estimate the population proportion by p = r/n. The standard error of 
the proportion is given by:

Standard error of a proportion SE(p)

p n( )p /

The 95% confi dence interval for a proportion uses the Normal distribu-
tion assuming that the sample is large. The derivation of these formulae 
can be found in Bland, Chapter 8.1

95% confi dence interval for a proportion from a large sample

p –1.96 SE(p) to p + 1.96 SE(p)

How to interpret 95% confi dence interval for a proportion
A 95% confi dence interval for a proportion is a range of values which • 
has 95% probability of containing the true population proportion
In other words, we have 95% confi dence that the true value of the • 
proportion in the population from which the sample was taken lies 
within the interval

What is a large sample?
Means• : for a sample mean, a sample size of 100 is considered large 
and will lead to the sample mean following an approximately Normal 
distribution irrespective of the underlying distribution of the data. 
In this case the multiplier 1.96 can be used to calculate confi dence 
intervals. If the sample is smaller than this, the data needs to follow 
a Normal distribution and the t distribution is used to calculate the 
confi dence interval (see Bland, Chapter 101).
Proportions:•  for a sample proportion, the sample size can be 
considered large if r and n – r are both greater than 5. If this does not 
hold, an exact Binomial confi dence interval can be calculated2.
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Example

An Australian study compared the prevalence of asthma and allergy in 
schoolchildren over a 20-year period.3 The researchers reported the 
prevalence of diagnosed asthma in 2002 as 31% (249/804). What is the 
95% confi dence interval for this estimate?

r/n = 249/804=0.310

95% CI given by:-

0 310 1 96 0 1 0 804. .310 1 . (310 . )310 /−1 96 0 1(310     to

0 310 1 96 0 1 0 804. .310 . (310 . )310 /+1 96 0 11 . (310

0.310–1.96 × 0.016 to 0.310 + 1.96 × 0.016

0.28 to 0.34

or 28% to 34%

Therefore the prevalence of diagnosed asthma is 31% (95% CI: 28% 
to 34%).

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guide. London: BMJ Publishing Group, 2000.
3 Toelle BG, Ng K, Belousova E, Salome CM, Peat JK, Marks GB. Prevalence of asthma and 

allergy in schoolchildren in Belmont, Australia: three cross sectional surveys over 20 years. BMJ 
2004; 328(7436):386–7.
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Tests of statistical signifi cance
Rationale
A signifi cance test uses data from a sample to show the likelihood that 
a hypothesis about a population is true. There are always two mutually 
exclusive hypotheses since, if the hypothesis being tested is not true, then 
the opposite hypothesis must be true. A measure of the evidence for or 
against the hypothesis is provided by a P value.

Null hypothesis and alternate hypothesis
The null hypothesis is the baseline hypothesis which is usually of the 
form ‘there is no difference’ or ‘there is no association’. The corre-
sponding alternative hypothesis is ‘there is a difference’ or ‘there is an 
association’.

Examples
Does a new treatment reduce blood pressure more than an existing • 
treatment?
The null hypothesis is that mean blood pressure is the same in the 
two treatment groups
The alternative hypothesis is that mean blood pressure is different in 
the two treatment groups
Is there an association between blood pressure and risk of • 
cardiovascular disease?
The null hypothesis is that there is no association between blood 
pressure and risk of cardiovascular disease
The alternative hypothesis is that blood pressure is associated with a 
change in risk of cardiovascular disease

Two-sided tests (two-tailed tests)
In the examples above, the alternative hypothesis is general and allows 
the difference to be in either direction. In the fi rst example, patients given 
the new treatment could have lower mean blood pressure or they could 
have higher mean blood pressure. This is known as a two-sided or two-
tailed test.

One-sided tests (one-tailed tests)
In the fi rst example, a one-sided or one-tailed test could have the alter-
native hypothesis that mean blood pressure is lower in patients taking the 
new treatment than patients taking the existing treatment.

This means that the null hypothesis is now composite and that either 
the two groups have the same mean blood pressure or that patients taking 
the existing treatment have lower blood pressure. In other words, a one-
sided test does not distinguish between ‘no difference’ and a ‘harmful 
effect’ of the new treatment. In virtually all situations this would be 
unacceptable, since it is important to know if a new treatment is harmful.

Two-sided tests should always be used unless there is clear 
justifi cation at the outset to use a one-sided test.
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Steps in doing a signifi cance test (adapted from Bland, 
Chapter 91)
1. Specify the hypothesis of interest as a null and alternative hypothesis
2. Decide what statistical test is appropriate
3. Use the test to calculate the P value
4. Weigh the evidence from the P value in favour of the null or 

alternative hypothesis

Errors in signifi cance testing
Since a signifi cance test uses sample data to make inferences about • 
populations, using the results from a sample may lead to wrong 
conclusion.
Type 1 error• : this is getting a signifi cant result in a sample when 
the null hypothesis is in fact true in the underlying population (‘false 
signifi cant’ result).
We usually set a limit of 0.05 (5%) for the probability of a type 1 error, • 
which is equivalent to a 0.05 cut-off for statistical signifi cance.
Type 2 error• : this is getting a non-signifi cant result in a sample when 
the null hypothesis is in fact false in the underlying population (‘false 
non-signifi cant’ result).
It is widely accepted that the probability of a type 2 error should be no 
more than 0.20 (20%).

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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P values
What is a P value?

A P value is a probability, and therefore lies between 0 and 1• 
It comes from a statistical test that is testing a particular null hypothesis• 
It expresses the weight of evidence in favour of or against the stated • 
null hypothesis
Precise defi nition• : P value is the probability, given that the null 
hypothesis is true, of obtaining data as extreme or more extreme than 
that observed
0.05 or 5% is commonly used as a cut-off, such that if the observed P is • 
less than this (P<0.05) we consider that there is good evidence that the 
null hypothesis is not true. This is directly related to the type 1 error 
rate.
If 0.05 is the cut-off then P<0.05 is commonly described as • statistically 
signifi cant and P≥0.05 is described as not statistically signifi cant

Interpreting signifi cant results (P<0.05)
The calculation of a statistical signifi cance test assumes that the null 
hypothesis is true. Hence the P value expresses the probability of getting 
the given data if that hypothesis were in fact true. In this way, a very small 
P value indicates that the observed data are not consistent with the null 
hypothesis – they are unlikely to have occurred if the null hypothesis were 
really true. It is in this sense that the P value provides evidence for or 
against the null hypothesis.

0 A P value is not the probability that the null hypothesis is true.

Interpreting non-signifi cant results (P≥0.05)
If P is greater than or equal to 0.05 then we usually say the fi nding is not 
signifi cant. We cannot take this to mean that the null hypothesis is in fact 
true. We can only conclude that there is insuffi cient evidence to show a 
difference. This distinction is important because small samples often show 
non-signifi cant differences simply because there are too few data (type 2 
error). It may be misleading and wrong to conclude that in such cases, ‘not 
signifi cant’ means ‘there is no real difference’. Such incorrect interpreta-
tion of non-signifi cance may lead to real differences being missed.

If a study is large and adequately powered, and the calculated confi dence 
interval excludes any clinically important difference, then only in this 
case is it reasonable to conclude that there is no meaningful difference 
(b Statistical signifi cance and clinical signifi cance, p. 250).

Reporting P values
It is best always to report the exact P value from a test rather than report 
fi ndings as P<0.05 or P≥0.05 or worse ‘P=NS’ (meaning non-signifi cant). 
If the exact P value is given, then the readers have all of the available 
evidence and can interpret the fi ndings themselves. The evidence pro-
vided by P=0.045, which would be regarded as statistically signifi cant, is 
hardly different from the evidence provided by P=0.055, which would 
be regarded as non-signifi cant. If the exact value is always provided this 
allows a full interpretation of the evidence.
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In addition, estimates and confi dence intervals should be given wherever 
possible. 

Summary points
A P value is the probability of observing data as extreme or more • 
extreme than that observed, if the null hypothesis is true
P<0.05 is usually regarded as statistically signifi cant and P• ≥0.05 
regarded as non-signifi cant
Not signifi cant does not mean ‘there is no difference’ or ‘there is no • 
effect’. It means there is insuffi cient evidence for a difference or effect
Exact P values should be given with estimates and confi dence • 
intervals wherever possible
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Statistical signifi cance and clinical 
signifi cance
Statistical signifi cance
Much caution is needed in interpreting statistical signifi cance because the 
size of the P value is driven by the following factors:

The size of the real effect in the population sampled• 
The sample size• 
The variability of the measure involved• 

Large samples are more likely to show a signifi cant difference. In such 
cases it is possible for data to show a statistically signifi cant result when 
the size of the effect is too small to be clinically important. Therefore it is 
important to look at the size of effect and confi dence interval as well as 
the P values when interpreting a test result.

Clinical signifi cance
This indicates that the difference observed is large enough to be clinically 
meaningful. It is not necessarily related to statistical signifi cance as it is a 
clinical judgement and not a mathematical quantity.

A set of data may not show a statistically signifi cant effect but the 
effect size may suggest that a meaningful difference is plausible. While a 
conclusive interpretation cannot be made in such circumstances, it may be 
a useful pointer to the need for further data.

Inspect the data
2 It is important to look at the data and the summary statistics as well as 
the statistical test results. Interpretation of statistical signifi cance alone as 
implying clinical importance may lead to incorrect interpretation of data.

Summary points
Statistical signifi cance does not necessarily imply the differences • 
observed are clinically meaningful
Non-signifi cant results may be suggestive of clinically important • 
effects
Inspect summary statistics – effect sizes and confi dence intervals – as • 
well as P values
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t test for two independent means
Details of the test

It compares means from two independent samples• 
It is based on the sampling distribution of the difference of two sample • 
means (Normal)
It allows the calculation of a difference and confi dence interval for the • 
difference
The formula is given below, although the test can be done using a • 
computer program
For derivation and more details of test, see Bland, Chapter 10• 1

Null hypothesis
Two samples come from populations with the same mean• 

Assumptions of test
Continuous data, Normally distributed. The data can be checked • 
visually for symmetry using a dot plot, histogram, or Normal plot
Variances (standard deviations) are the same. This can be checked • 
by inspecting the standard deviations. If they are different, the 
Satterthwaite approximation, available in some statistical programs, 
may be used
Note, there are signifi cance tests available to check for Normality • 
and for similarity of variance (standard deviation). However, these 
are not very helpful guides as they are often non-signifi cant for small 
samples even when there appears to be non-Normality or differences 
in variance, and they tend to be signifi cant for large samples even if the 
skewness or differences in variance appear to be minor.

If assumptions do not hold
The statistical test is dubious and the P value may be wrong• 
Try • transformation of data (b Transforming data, p. 330)
Note that the t test is quite robust to slight skewness if two samples • 
are the same size but is less robust if variances are clearly different
Skewness and non-similar standard deviation often go together and • 
correcting one by transforming the data may correct the other as well

The t distribution
Has one parameter, the • degrees of freedom
‘Degrees of freedom’ is related to the sample size = • n1+n2–2  here
There is no single t distribution. Each • n1+n2–2 gives a different shape
For large • n1+n2–2 (>100), the t distribution is close to the Normal 
distribution
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Note that the test is also known as two-sample t test.

Doing a t test for means

t
difference in means

SE
X X

SD

n

SD

n
p pSD

= =

+
( )difference

1 2

2

1

2

2

Where 
—
X1, 

—
X2 are the means, SDp is the pooled standard deviation cal-

culated from the group SDs, SD1 and SD2 (see below) and n1,n2 are the 
totals in the two groups.

SD
SD SD
np =

+ −n
(n ( )1 1S) 2

2 2SD) 2

1 2+ n
SDSD (n −SD

2

t follows a Student’s t distribution with n1 + n2 –2 degrees of freedom. 
P values are obtained from tabulated values of the t distribution or a 
computer program.

Calculating a 95% confi dence interval for the difference:

difference in means t SES± ( )n −n ( )difference in meansd ffe e ce
1 2+n

= ± +( ) ( )−− t
SD

n

SD

n+
p p+

SD
1 2

2

1

2

2
1 2+

Where the value of t( )n1 2nn  is the two-tailed 5% point of the t distribu-
tion with n1 + n2 –2 degrees of freedom.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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t test for two independent means: 
example

The following data come from a small study of risk factors for bron-
chopulmonary dysplasia (BPD) in preterm babies and compares a 
measure of lung function, forced residual capacity (FRC), in infants 
with and without BPD. The FRC data have been log-transformed 
(b Transforming data, p. 330) as they were skewed. The data were:

Group 1  No BPD:  n, mean (SD): 38, 3.028 (0.276)
Group 2  BPD:        n, mean (SD): 27, 2.744 (0.240)

SDp =
+ −

= −

( ) ( )

( )− . (+ ) .

S)− (D SD
n +

1 1)S) 2
2 2)SD2

1 2n+
2

( −S) D + (
2

0×) 27 1) × 2400
38 27 2

0 2617
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=

=

+

= −

.

. .028 2

.
t
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n

SD
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p p+

SD ++
=

0 2617
27

4 31
2.

t follows a t distribution with 38+27–2=63 degrees of freedom. The 
P value associated with this is 0.0001 (from computer program).

95% confi dence interval for the difference:

3 028 2 744 1 998
0 2617

38
0 2617

27
0 284 0 132

0 152

2 20 2617
. .028 .

. .2617 0
. .8 0

.

− ±2 744.2 × + = ±0 284.284

= to 00 416.

Thus there is a signifi cant difference of 0.284 in mean FRC (log scale). 
between infants without and with BPD with 95% CI 0.152 to 0.416.
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Checking the assumptions
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Fig. 8.2 Histogram of FRC (log scale) with the equivalent Normal distribution 
curve.

Figure 8.2 shows that the data are close to symmetry and the • 
assumption of a Normal distribution is reasonable
The two standard deviations, 0.240 and 0.276 are similar• 
Therefore the t test assumptions hold for these data• 
The data were transformed for analysis but have not been back-• 
transformed here. See b Transforming data, p. 330 for how to back-
transform these data

t test for large sample sizes

Note that with a large sample size (>50 per group), the assump-
tions of the two-sample t test are less critical to the validity of the 
test but a transformation is still worth doing with skewed data to 
achieve maximum statistical power and to improve the coverage 
of the 95% confi dence interval.

Extension of t method
The t test for two independent means compares means in two groups. 
The method can be extended to compare more than two groups using 
a technique called one-way analysis of variance (b One-way analysis of 
variance, p. 280).
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t test for paired (matched) data
Details of the test

It analyses mean difference in a paired sample• 
It is based on the sampling distribution of the mean difference • 
(Normal)
It allows the calculation of a mean difference and confi dence interval • 
for the difference
The formula is given below, although the test can be done using a • 
computer program
For derivation and more details see Bland, Chapter 10• 1

Null hypothesis
The mean change or difference is zero in the population• 

Assumptions of test
Continuous data, • differences follow a Normal distribution. The data 
can be checked visually for symmetry using a dot plot, histogram, or 
Normal plot
Variances (standard deviations) are constant – check by plot of • 
difference against mean, i.e. plot (x1–x2) against (x1+x2)/2. This should 
show an even spread for (x1–x2) across the range of values of (x1+x2)/2

If assumptions do not hold
The statistical test is dubious and the P value may be wrong• 
Try • transformation of data (b Transforming data, p. 330) – 
transform the raw data not the differences
Note that paired t test only requires the differences to be Normal. • 
Sometimes the original data can be skewed but when a difference or 
change is calculated, the difference may be Normally distributed

Note that the test is also known as one-sample t test.
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Doing a paired t test

t
mean difference

SE
d

SD
n

= =
( )mean difference 2

Where if xi1 – xi2 = di, then the mean of the difference di is 
–d, SD2 is the 

standard deviation of the differences, n is the sample size.

t follows a t distribution with n–1 degrees of freedom

95% Confi dence interval for the mean difference

mean difference ± tn–1 SE (mean difference)

= −d t− SD
n

to d t+ SD
nnnto d t+n−1

2

1

2

to

Where tn–1 is the two-tailed 5% point of the t distribution with n–1 
degrees of freedom, which is obtained from tables or a statistical 
program.

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London: BMJ Publishing Group, 2000.
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t test for paired data: example
Calculations

The following data are plasma cotinine levels (log scale) in 181 women 
measured at two points in pregnancy. The t test is used to investigate 
whether their cotinine levels change over pregnancy, calculating the 
change from early to late pregnancy. Cotinine is reported here on a 
logarithmic scale (log ng/ml).

Mean difference (early-late) = 0.151
SD of difference = 0.456

t = =0 151

0 456
181

4 46
2

.

.
.

This has 180 degrees of freedom (i.e. 181 – 1) and a P value <0.0001

The 95% confi dence interval is given by:

0 151 1 96
0 456
181

0 085 0 217

2

. .151 1
.

. .085 0

±

toto

So there is good evidence that women’s cotinine level decreases 
from early to late pregnancy by an average of 0.15 log ng/ml (95% 
CI: 0.09 to 0.22).

Checking the assumptions
Fig. 8.3a shows that the data closely fi t the Normal distribution• 
Fig. 8.3b shows that the variability is reasonably similar across the range • 
of values of the mean difference
The paired t test assumptions hold for these data• 
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Fig. 8.3 (a) Histogram of change in plasma cotinine (log scale) with the equivalent 
Normal distribution curve; (b) scatter plot of change in cotinine against the mean.

Paired t test for large sample sizes

Note that with a large sample size (>100 paired observations) the 
assumptions of the paired t test are less critical to the validity of 
the test but a transformation is still worth doing with skewed data 
to achieve maximum statistical power and to improve the cov-
erage of the 95% confi dence interval.
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z test for two independent proportions
Details of the test

It compares proportions from two independent samples• 
It is based on the sampling distribution of the difference of proportions • 
(Normal)
It allows the calculation of a difference and a confi dence interval for • 
the difference
The formula is given below, although the test can be done using a • 
computer program
Is equivalent to the chi-squared test (• b Chi-squared test, p. 262)
For derivation and more details of test see Bland, Chapter 9• 1

Null hypothesis
The two samples come from populations with the same proportion• 

Assumptions of test
Binary data• 
The sample is large: • r, n–r are both >5 for each group where r is 
the total with the characteristic and n–r is the total without the 
characteristic (see below)

Doing a z test for proportions

The common proportion is given by:

p =
 r1 + r2

      n1 + n2

Where r1, r2 are totals with characteristic, n1,n2 are overall totals in two 
groups; p1=r1/n1, p2=r2/n2

z
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z follows a Normal distribution with mean 0 and standard deviation 
1 when the null hypothesis is true. The P value is the probability of a 
value less than –z and greater than +z for a two-sided test. This can be 
obtained from tables or a computer program. 

A 95% confi dence interval for the difference can be calculated:
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Example

A clinical trial for pain relief during venepuncture compared EMLA 
cream applied 5 minutes before injection with a placebo cream. The 
outcome analysed here is the proportion reporting with no pain.

Group 1 EMLA:      p1 = 25/30 = 0.83
Group 2 Placebo:    p2 = 20/30 = 0.67

p =  25 + 20  = 0.75
       30 + 30

p1 – p2 = 5/30 = 0.1667

z =
+− ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=

0 1667

0 1 0
1
30

1
30

1 49

.

. (75 . )75

.

The P value associated with z=1.49 is 0.136 and so this difference is 
not signifi cant. We therefore conclude that there is insuffi cient evidence 
from these data that EMLA for 5 minutes is effective. The 95% CI is:

0 1667 1 96
0 1 0

30
0 1 0

30
0 048 0. .1667 1

. (83 . )83 . (67 . )67
.± − + −⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = −  to ..382

Note the 95% CI is quite wide because the samples are relatively small.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Chi-squared test
Details of the test

In general it tests for an association between two categorical variables• 
Where each variable has only two categories this is equivalent to the z • 
test for two proportions
The test is based on the • chi-squared distribution with n degrees of 
freedom where n is given by (no. of rows – 1) x (no. of columns – 1)
It gives a P value but no direct estimate or confi dence interval for • 
the estimates unlike the z test, which gives both (b z test for two 
independent proportions, p. 260)
For more details of test see Bland, Chapter 13• 1

Null hypothesis
There is no association between the two variables in the population • 
from which the samples come

Rationale of test
It calculates the frequencies that would be expected if there were no • 
association (i.e. null hypothesis is true)
It compares the observed frequencies with these expected values• 
If the observed frequencies are very different to the expected values • 
this provides evidence that there is an association
The test uses a formula based on the chi-squared distribution to give • 
a P value

Assumptions of test
Large sample test• 
Rule of thumb for test to be valid: • 
at least 80% of expected frequencies must be greater than 5
For a 2x2 test this means all expected values must be >5• 
If assumptions don’t hold, consider collapsing the table if multi-• 
category, use chi-squared with continuity correction (see b Yates’ 
correction, p. 263) or Fisher’s exact test (b Fisher’s exact test, p. 266)

Doing a chi-squared test
0•  Always use with frequencies, never use percentages for 
calculations
The formula used works for a chi-squared test for all size tables• 
The test is usually done with a computer program – the calculations • 
are done to show how the test works
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Yates’ correction
The chi-squared test is based on frequencies which are discrete whilst the 
chi-squared distribution is continuous. The fi t is good enough for large 
samples but breaks down when this is not so. Yates’ correction is a modi-
fi cation of the chi-squared formula which makes the test statistic fi t the 
continuous chi-squared distribution better.

Yates’ correction is sometimes is given as an option for chi-squared 
tests in statistical programs and is worth using unless the sample is very 
large when it will make no difference to the P value. Some programs give 
both a Yates’ corrected and the ordinary chi-squared P value. In such cases 
the corrected test may give a slightly bigger P value than the ordinary chi-
squared test and this larger P value should be reported.

Note that using Yates’ correction does not remove the need for the 
assumptions regarding the expected values.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Chi-squared test: calculations
Doing a chi-squared test

These data in Table 8.1 come from a large US study of delayed time to 
defi brillation after in-hospital cardiac arrest.1

Table 8.1 Delayed time to defi brillation after in-hospital cardiac 
arrest1

Event occurred after hours

Yes No

Time to >2 min 2094 (44%) 836 (41%)

defi brillation ≤2 min 2650 (56%) 1209 (59%)

Total 4744 2045

Overall proportion with time >2 min:• 
    =  (2094+836)/(4744+2045) = 2930/6789 =  0.431580

Overall proportion with time • ≤2 min:
    =  (2650+1209)/(4744+2045) = 3859/6789 = 0.568420

Expected values are given by multiplying these by each column total:• 
4744x0.431 580=2047.4155, 2045x0.431 580=882.5811
4744x0.568 420=2696.5845, 2045x0.568 420=1162.4189

The chi-squared test statistic is given by the following formula where • 
O and E are the observed and expected frequencies for all cells of 
table:

( )

( . )
.

( .

Eall cells

= +

∑
2

24155
2047 4155

5811))
.

( . )
.

( . )

2

2 2( )
882 5811

5845
2696 5845

4189
11

+ +
6266 4189

6 19
.

=

With degrees of freedom: (2–1)x(2–1)=1

This has a P value of 0.013 which is statistically signifi cant. Hence we 
have good evidence of a relationship between out of hours occurrence 
of cardiac events and delayed time to defi brillation.

Reference
1 Chan PS, Krumholz HM, Nichol G, Nallamothu BK. Delayed time to defi brillation after 

in-hospital cardiac arrest. N Engl J Med 2008; 358(1):9–17.
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Fisher’s exact test
Details of the test

It is useful for small samples where chi-squared test is invalid• 
In general it tests for an association between two categorical variables• 
It is normally only used for 2• x2 tables but some statistical programs 
allow bigger tables to be analysed
For 2• x2 tables, the method involves evaluating the probabilities 
associated with all possible tables which have the same row totals 
and the same column totals as the observed data, assuming the null 
hypothesis is true
Since the test is • based on exact probabilities, it is computationally 
intensive and may be slow or fail to compute for large sample sizes
The test gives P value but no direct estimate or a confi dence interval • 
for estimates
For more details of test including a worked example, see Bland, • 
Chapter 131

Null hypothesis
There is no association between the two variables in the population • 
from which the samples come
This tests same null hypothesis as the chi-squared test• 

Assumptions of test
None• 

Using Fisher’s exact test
0 • Always use with frequencies, never use percentages for 
calculations
There is • no simple formula and so the test is normally calculated 
using a statistical program
The test is one-sided and there is no unique way to get the two-sided P • 
value. Different statistical programs therefore can give slightly different 
two-sided P values, although the one-sided P value should be the same. 
In practice this should not make any appreciable difference
Unless there is a good reason, • use the two-sided P value
Fisher’s exact test will give a P value which is at least as big as the chi-• 
squared test. For large samples the two P values will be very similar 
but for small samples the P value from the chi-squared test is too 
small
If in doubt about whether the sample size is large enough for the • 
chi-squared test to be valid, use Fisher’s exact test
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Example

The example in Table 8.2 comes from a follow-up of extremely preterm 
infants and shows the proportions of infants still on home oxygen at age 
2 according to mode of ventilation at birth, high frequency oscillation 
(HFOV) or conventional(CV).2

Table 8.2 Proportions of infants still on home oxygen at age 2 
according to mode of ventilation at birth

Ventilation at birth

HFOV CV

On home Yes 2 (1.2%) 4 (2.1%)

oxygen No 171 (98.8%) 190 (97.9%)

Total 173 194

Expected values are 2.8, 3.2, 170.2, 190.8, respectively. Hence, the • 
chi-squared test which gives P=0.50 is not valid
Fisher’s exact test gives two sided • P = 0.69
Note that Fisher’s P value is larger than chi-squared. Here it doesn’t • 
affect the conclusions but if P was closer to 0.05 it might do

Hence we conclude that there is no evidence that mode of ventilation is 
associated with the use of home oxygen at age 2.

Note that when presenting these data in a report there is no need to 
report both rows of the table. It would be suffi cient to report 2/173 
(1.2%) versus 4/194 (2.1%).

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Marlow N, Greenough A, Peacock JL, Marston L, Limb ES, Johnson AH et al. Randomised trial 

of high frequency oscillatory ventilation or conventional ventilation in babies of gestational 
age 28 weeks or less: respiratory and neurological outcomes at 2 years. Arch Dis Child Fetal 
Neonatal Ed 2006; 91(5):F320–6.
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Estimates for tests of proportions
Reporting estimates
The chi-squared test and Fisher’s exact test are tests of statistical signifi -
cance and only give a P value. They do not provide an estimate of the size 
of effect that is observed since neither the chi-squared test value nor the 
P value measure the effect size or strength of relationship. An estimate is 
therefore needed to summarize the size of effect observed.

Choosing which estimate to use for a 2x2 table
The choice of estimate may be driven by the type of data or study design, 
or may simply be a matter of preference. The following suggestions come 
from Peacock and Kerry, Chapter 7.1 Table 8.3 gives an example.

Risk difference: p1 – p2

Use if actual size of difference is of interest• 
Most straightforward estimate and useful for surveys• 

Relative risk: p1 / p2

Use if the relative difference is of interest• 
Useful when comparing the size of effect for several factors • 
particularly if they are ordered
Easier to interpret than the odds ratio• 
Do not use for case–control studies• 

Odds ratio: 
p p1

1

2

2( )p11 p1 ( )p21p 1

(or ad
bc

 where a, b, c, d are 2x2 table frequencies)

Use for case–control studies• 
Approximately equal to relative risk when the outcome is rare• 
Can be misinterpreted when the outcome is common• 
Can adjust for other factors using logistic regression• 
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Example

Table 8.3 Timing of cardiac event and time to defi brillation (b see 
Table 8.1, p. 264)

Event occurred after hours

Yes No

Time to >2 min 2094 836

defi brillation ≤2 min 2650 1209

Total 4744 2045

To quantify the relationship between time of the cardiac event and the 
rate of delayed defi brillation we could use any one of three estimates:

1. Risk difference (difference of proportions) 
p1= 2094/4744 = 0.4414, p2= 836/2045 = 0.4088
p1–p2 = 0.4414-0.4088 = 0.0326 or 3.2%

2. Relative risk (ratio of proportions, rate ratio)
p1/p2 = 0.4414/0.4088 = 1.08

3. Odds ratio (ratio of odds)

p p1

1

2

2

0 4414
4414

0 4088
4088

1 14
( )p11 p1 ( )p21

.
( .1 0 )

.
( .1 0 )

.
p 1

=
44140 ) (1

=

0 Note of caution: relative risk does not equal odds ratio
The relative risk and odds ratio are different measures of association • 
and will only give similar values if the event is rare
This is demonstrated in the example where the relative risk is 1.08 • 
which implies an 8% increase in risk and the odds ratio is 1.14 which 
implies a 14% increase in odds. The event, delayed defi brillation, is not 
rare as the average rate is 0.43 or 43%
Odds ratios should therefore • only be interpreted as if they were 
relative risks if the event was rare

Reference
1 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Confi dence intervals for tests of 
proportions
It is important to calculate a 95% confi dence interval for an estimated pro-
portion to show how precise the estimate is.

All formulae assume that the samples are large as defi ned in the section 
b 95% confi dence interval for a proportion, p. 244. If this is not true 
then other methods are needed. These are often available in statistical 
programs. Altman1 has worked examples.

Below are worked examples of the calculations using the defi brillation 
data shown in b Table 8.3, p. 269). These calculations can usually be 
done using a statistical program but having an understanding of where 
they come from is helpful when interpreting the computer output and 
reports where results may be presented on logarithmic scales. 

95% confi dence interval for risk difference
(See b z test for two independent proportions, p. 260, for the formula; 
p1 and p2 are the proportions in groups 1 and 2, n1 and n2 are the totals 
in groups 1 and 2).

( ) .
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p
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1
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1 9. 6
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= ±.0 0326
1411
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. .03 6 0 . .007 0

+

= ± =0 0326 0 0256. .0326 0 toto
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95% confi dence interval for a relative risk

Assuming sample is large (b What is a large sample?, p. 244); if 
sample is small use an exact method1)
This calculation has to be done on the logarithmic scale using logs to 
base e. If the relative risk is RR = p1/p2, and the sample sizes are n1, n2, 
the standard error (SE) of the logarithm is given by:

SE RR
p n p ne(log )

( )p ( )p= +)p (1

1 1n
2

2 2n

If the sample is large, the logeRR follows a Normal distribution and the 
95% confi dence interval is given by:

logeRR – 1.96 SE(logeRR) to logeRR + 1.96 SE(logeRR)

The CI for RR by obtained by taking the exponential of these limits:. The 
RR is 1.08 and its logarithm is 0.0770. The standard error of this is:

SE RRe(log )
( . )
.

( . )
.

=
×

+
×

=4414
0 4414 4744

4088
0 4088 2045

0 0. 31233

The 95% CI for the logeRR is then:

0.077 ± 1.96 x 0.0312

= 0.0158 to 0.1382

The 95% CI for the RR is found by taking the exponential:

1.02 to 1.15

Reference
1 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London: BMJ Publishing Group, 2000.
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Confi dence intervals for tests of 
proportions (continued)
95% confi dence interval for an odds ratio

Assuming sample is large (b What is a large sample?, p. 244; 
if sample is small use an exact method1):
This is calculated in a similar way to the CI for the RR using the loga-
rithmic scale. We calculate the log odds ratio and SE of log odds ratio 
(OR):

SE OR
n p n pe(log )

( )p ( )p
= +1 1

1 1p 1 2n) 2 2( p

If the sample is large, the logeOR follows a Normal distribution and the 
95% confi dence interval is given by:

logeOR –1.96 SE(logeOR) to logeOR + 1.96 SE(logeOR)

OR=1.143, its logarithm is 0.1334. The standard error of this is:

SE ORe(log )
. ( . ) . ( . )

=
(.×

+
(.×

=

1
4744 0 1 0−

1
2045 0 1 0−

0..0536..

The 95% CI for the logeOR is:

0.1334 ± 1.96 x 0.0536 = 0.0283 to 0.2384

The 95% CI for the OR is found by taking the exponential:

1.03 to 1.27
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Interpreting the confi dence intervals
A 95% confi dence interval for an estimate may be used to deduce statis-
tical signifi cance by checking if the interval contains the null hypothesis 
value. If a 95% CI excludes the appropriate null value, then the estimate is 
statistically signifi cant at the 5% level. The null values are given below:

For differences in proportions: null value = 0• 
For relative risk: null value = 1.0• 
For odds ratio: null value = 1.0• 
If a 95% CI excludes the null value, then P<0.05• 

Footnote
When testing the difference of two proportions the calculated standard 
error is slightly different for the test to the confi dence interval. In practice 
this will make little difference.

Reference
1 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London: BMJ Publishing Group, 2000.



274 CHAPTER 8 Statistical tests

Chi-squared test for trend
Rationale
When we wish to compare proportions among groups which have an 
ordering, it is important to use the ordering to increase the power of 
the statistical analysis. The ‘ordinary’ chi-squared test takes no account 
of ordering – if the columns were re-arranged in any order in a 2 x k 
table then the chi-squared test result would be exactly the same. This is 
because the chi-squared test looks for deviations from the null hypothesis 
that there is no association at all and does not test for any trend. The chi-
squared test for trend is a specifi c test that investigates the linear trend in 
a set of proportions.

Details of the test
It fi ts a linear trend through the ordered proportions• 
It effectively partitions variability in data into two components:• 

Variability due to the trend• 
Remaining variability not due to trend• 

If there is a real trend then the variability due to the trend will be much • 
greater than the remaining variability
The test statistic follows a chi-squared distribution with 1 degree of • 
freedom

Null hypothesis
There is no linear trend in a set of ordered proportions• 

Example

Table 8.4 Death rates by gestational age in extremely preterm babies1

Gestational age (weeks)

23 24 25 26 27 28

Deaths n (%) 32 (84) 41 (40) 46 (32) 38 (25) 32 (16) 16 (10)

Total 38 102 144 155 201 157

Chi-squared test for trend (details omitted – see Bland2 chapter 13)
Overall chi-squared without taking ordering into account gives: • 
χ2=112.2, degrees of freedom =5, P<0.0001

Test for trend gives:• 
χ2=91.8, degrees of freedom =1, P<0.0001

Hence there is good evidence for overall variability in survival by gesta-
tional age among extremely preterm babies and also good evidence that 
the trend is linear.

(Note that the trend does not explain all of the variability, the remaining 
component has χ2=20.4, degrees of freedom =4, P=0.0004).
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Calculating and presenting estimates
In the example (Table 8.4) we have shown the actual proportions that 
died in each gestational age category. We could use a relative measure 
such as the relative risk or odds ratio (b Estimates for tests of propor-
tions, p. 268) instead. To do this we have to defi ne one category as the 
reference category and relate all others to that category. If we do this 
using relative risks (RR) with 28 weeks as the reference category we get 
the relative risks shown in Table 8.5.

Table 8.5 Relative risk of death by gestational age in extremely 
preterm babies1

Gestational age (weeks)

23 24 25 26 27 28

RR 8.3 3.9 3.1 2.4 1.6 1.0

This shows the trend in a relative way rather than an absolute way as 
with proportions. The choice of summary measure is a judgement.

Large tables with ordered categories
Suppose we have a large table with >2 rows and >2 columns:

Both variables ordered, use rank correlation (• b Rank correlation, 
p. 312)
Only one variable ordered, use Kruskal–Wallis test (see Conover• 3)

References
1 Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L et al. High-frequency 

oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med 
2002; 347(9):633–42.

2 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
3 Conover WJ. Practical nonparametric statistics. 3rd ed. New York: Wiley, 1999.
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McNemar’s test for paired proportions
Details of the test

It tests for an association between two paired proportions• 
It can be used with matched case–control study data or a ‘before and • 
after’ study
The test is based on the • chi-squared distribution with 1 degree of 
freedom
It gives a P value, estimates and a confi dence interval• 
For more details of the test, see Bland, Chapter 13• 1

Null hypothesis
The population prevalence is the same under the two conditions• 

Rationale of test
It is based on the discordant pairs where exposure is different (yes/• 
no, no/yes). Concordant pairs (yes/yes, no/no) are ignored as they 
contribute no information about differences within pairs
Expected frequencies are calculated assuming there is no association • 
(null hypothesis true), i.e. the frequencies are the same in both 
discordant pairs (yes/no, no/yes)
Observed frequencies are compared with expected values. If the • 
observed frequencies are very different from the expected values, this 
provides evidence for a real association
The test uses a formula based on chi-squared distribution to give a • 
P value

Assumptions of test
Large sample test• 
Rule of thumb for test to be valid: each expected frequency is greater • 
than 5

If assumptions don’t hold
P value will be too small leading to potentially false signifi cant results• 
If numbers are small but the rule of thumb holds, use the version of the • 
test with a continuity correction (see Bland, Chapter 13)1

Doing McNemar’s test
0•  Always use with frequencies, never use percentages for 
calculations
The test is usually done with a computer program – the calculations • 
following Table 8.6 have been done to show how the test works
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Example
This study investigated risk factors for death in patients admitted to hos-
pital with an acute asthma attack. Each patient who was admitted and died 
was matched to a similar patient who was admitted but survived. The data 
below show the analysis of the effect of short-acting B2 agonist for the 532 
patient pairs.

Table 8.6a,b Data from a matched case-control study of asthma 
death and use of short-acting B2 agonist2 presented in two ways

(a)

Died (case) Survived (control) No. of pairs Notation

Used Yes Yes 411 a

short Yes No 69 b

acting No Yes 45 c

β2 agonist No No 7 d

Total 532 N

(b) Results arranged as a 2x2 table

Died (case)

Used β2 agonist Yes No Total

Survived 
(control)

Yes 411 45 456

No 69 7 76

Total 480 52 532

Expected frequency = (• b+c)/2 = (69+45)/2 = 57
Test statistic is:• 

( )

( ) ( )

Ediscordant cells

= + =

∑
2

2 2( )
57 57

5 0. 5

This follows a chi-squared distribution with 1 degree of freedom 
and has P=0.031 showing that there was a relationship between 
use of short-acting β2 agonist and death from asthma.

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Anderson HR, Ayres JG, Sturdy PM, Bland JM, Butland BK, Peckitt C et al. Bronchodilator 

treatment and deaths from asthma: case-control study. BMJ 2005; 330(7483):117.
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Estimates and 95% confi dence intervals 
for paired proportions
Estimates for paired proportions
As with independent proportions, there are three estimates for paired 
proportions (b Estimates for tests of proportions, p. 268):

Difference between proportions• 
Relative risk• 
Odds ratio• 

In the example shown in b McNemar’s test for paired proportions, 
p. 276, the data are from a case–control study and so the relative risk 
cannot be calculated. The calculations for the estimated difference in 
proportions and matched odds ratio are shown below.

Calculating the difference in proportions of cases and 
controls using short-acting β2 agonist1

Proportion of cases who used short-acting β2 agonist
 = (411+69)/532 = 480/532

Proportion of controls who used short-acting β2 agonist
 = (411+45)/532 =456/532

Difference = 24/532 = 0.0451

SE (difference) = −
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( ) ( )+
n

−
n2

2

3  (proof omitted)

= −
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=( )+ ( )−
532 532

0 0. 19972

2

3

Hence 95% CI: 0.0451 ± 1.96 x 0.01997
0.006 to 0.084
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Calculating the odds ratio for cases and controls using 
short-acting β2 agonist1

Odds ratio for use of short-acting β2 agonist is given by the ratio of the 
odds of the b+c discordant pairs:

b/(b+c) 
= b/c

c/(b+c)

Hence OR = 69/45=1.53

There is no simple formula for the 95% CI for this but it can be cal-
culated using Confi dence Interval Analysis (CIA) software2 which gives 
95% CI: 1.038 to 2.284

Further examples
For more details on paired proportions and an example of paired cohort 
data, see Peacock and Kerry,3 Chapter 8.

References
1 Anderson HR, Ayres JG, Sturdy PM, Bland JM, Butland BK, Peckitt C et al. Bronchodilator 

treatment and deaths from asthma: case-control study. BMJ 2005; 330(7483):117.
2 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London BMJ Publishing Group, 2000.
3 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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One-way analysis of variance
Details of the method

This is an extension of the t test and compares means from three or • 
more independent samples
It gives one overall P value comparing all groups based on a test • 
statistic which follows an F distribution

Null hypothesis
The samples for each group come from populations with the same • 
mean values

0 Wrong approach
It is wrong to do t tests for all possible combinations of groups because • 
the more groups we have, the more likely it is that two groups will 
be far enough apart by chance to be signifi cantly different. Thus some 
comparisons will be signifi cant by chance alone (‘type 1 error’ b Errors 
in signifi cance testing, p. 247).

Rationale of one-way analysis of variance
One-way analysis of variance is based on the variability (‘variance’) • 
between the group means: if group means are far enough apart, this 
suggests that the groups are from different populations
It works by partitioning the overall variability into two components of • 
variability:
(i) The variability between the group means: ‘between group variance’
(ii)  The remaining variability not due to differences between the groups: 

‘residual variance’
If the groups are truly different, the between-group variance will be • 
much greater than the residual variance
This is tested using the • ratio of the two variances: the F ratio
If the variability between groups is no more than we would expect due • 
to randomness alone then the two estimates will be similar and the F 
ratio will be close to 1.0
If the F ratio is much greater than 1.0, the two estimates must be very • 
different, providing evidence that the group means are different

Assumptions of method
Continuous data, Normally distributed within each group: plot • 
observation-group mean (b One-way analysis of variance: example, 
p. 282)
Equal variance (standard deviation) in each group• 
Checking the assumptions: see t test (• b t test for two independent 
means: example p. 254)

If assumptions do not hold
The P value may be wrong• 
Try • transforming the data (b Transforming data, p. 330)
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Note that when the data are positively skewed, the standard deviation • 
(SD) in each group increases as the group means increase. In this 
situation a logarithmic transformation may correct the skewness and 
stabilize the standard deviation

The F distribution
The F ratio follows an F distribution if null hypothesis is true, i.e. if • 
there is no difference between the means
The F distribution is determined by its two parameters, the degrees of • 
freedom of the two variance estimates: 
(i) number of groups – 1
(ii) total observations – number of groups
The F ratio has a corresponding P value. P<0.05 is interpreted as • 
indicating that the group means are different from each other overall

The calculations
These are usually done using a computer package but can be done by • 
hand – see Bland, Chapter 101 for a worked example
The results are given as an • analysis of variance table (b Analysis 
of variance table, p. 284) and/or as group means with confi dence 
intervals

0 Further tests
If the analysis shows that there is variability between the means overall, • 
then pairs of means may be tested (b Multiple comparisons, p. 286)
It is • poor research practice to compare the smallest and largest 
means unless this was a prior hypothesis since an analysis of groups 
selected because the difference was big is likely to be statistically 
signifi cant

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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One-way analysis of variance: example
The data
The data in Table 8.7 come from a double-blind experiment of the effect 
of caffeine on the speed of fi nger tapping as a measure of performance.1 
Thirty subjects were given one of three doses of caffeine, 0 mg, 100 mg, 
or 200 mg. The number of taps per minute was recorded. The data 
were analysed using a statistical package and summary results are given in 
Table 8.8.

Table 8.7 Number of taps per minute in 30 subjects by caffeine dose 

Dose 
(mg)

Number of taps per minute in each subject

0 242 245 244 248 247 248 242 244 246 242

100 248 246 245 247 248 250 247 246 243 244

200 246 248 250 252 248 250 246 248 245 250

Summary statistics

Table 8.8 Summary statistics by caffeine group

Dose (mg) Number Mean (SD) 95% CI for mean

0 10 244.8 (2.39) 243.1 to 246.5

100 10 246.4 (2.07) 244.9 to 247.9

200 10 248.3 (2.21) 246.7 to 249.9

Testing assumptions
Since the sample is small, a Normal plot has been used to check that the 
data are reasonably close to a Normal distribution. The Normal plot is 
a plot of the cumulative frequency distribution for the data against the 
cumulative frequency distribution for the corresponding Normal distribu-
tion – an ‘observed versus expected’ plot. If the points lie close to the line 
of equality then there is good reason to assume that the data are Normally 
distributed. For more details on Normal plots, see Bland, Chapter 7.2

Figure 8.4 shows that the data points are scattered around the line 
of equality but since they stay reasonably close to the line, the data are 
close enough to a Normal distribution. Further, Table 8.8 shows that the 
standard deviations are similar in the three groups and so the analysis is 
valid.
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Fig. 8.4 Normal plot for one-way analysis of variance.

Note
The Normal plot was drawn using each observation minus its group mean: 
the within-group residual. The assumption of one-way analysis of vari-
ance is that the data are Normally distributed within each group and by 
examining the within-group residuals it is possible to examine all the data 
together. This is useful when the dataset is too small to examine the 
distribution within the groups separately.

References
1 Hand DJ. A handbook of small data sets. London: Chapman & Hall, 1994.
2 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Analysis of variance table
The results of one-way analysis of variance may be given in an analysis of 
variance table (see Table 8.9). This table shows how the total variability is 
partitioned into parts that can be explained by known factors and parts 
that are random (unknown).

Table 8.9 Analysis of variance table for caffeine experiment

Source of 
variation

DF Sum of 
squares

Variance 
estimate

F ratio P value

Between 
groups

2  61.4 30.7 6.18 0.006

Residual 27 134.1 4.97

Total 29 195.5

Explanation of Table 8.9
Row 2 gives the statistics for the ‘between-groups’ variability• 
Row 3 gives the statistics for the ‘residual’ variability• 
Row 4 gives the overall totals• 
DF•  is degrees of freedom; it is number of groups – 1  = 2, for row 
2, total number observations – 1 = 29, for row 4 and the difference 
between these, 29–2=27, for row 3
Total sum of squares•  is calculated in a similar way to a sum of 
squares for a standard deviation (b Summarizing quantitative data, 
p. 182):
(242–246.5)2 + (245–246.5)2 + (244–246.5)2 +…+ (250–246.5)2 = 195.5
Between groups sum of squares • is based on the sum of the 
squared differences between each group mean and the overall mean:
10 x [(244.8–246.5)2 + (246.4–246.5)2 + (248.3–246.5)2] = 61.4
Residual sum of squares • is obtained by subtraction:
195.5–61.4=134.1
Variance estimate • is the sum of squares/DF:
Between-groups variance = 61.4/2 = 30.7
Residual variance = 134.1/27 = 4.97
F ratio • is ratio of 2 variances:
30.7/4.97 = 6.18
P value • is probability associated with an F value of 6.18 if the null 
hypothesis of no difference between the groups, were true. As it is 
very small, we conclude that the group means are different from each 
other.
Hence there is good evidence that caffeine affects performance.• 
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Multiple comparisons
Introduction
After doing a one-way analysis of variance, it may be desirable to compare 
particular pairs of means. Care needs to be taken in how this is done to 
prevent the spurious signifi cant results which will arise when many com-
parisons are done, despite there being no real differences in the under-
lying populations.

Approaches to multiple testing
0•  t tests should not be used to test all combinations of the group 
means since this will lead to an excess of false signifi cant results
t tests can be used as a guide for a small number of comparisons • if the 
overall variation between groups is signifi cant
Better methods are available which take multiple testing into account • 
by preserving the type 1 error rate at 5%, such as Bonferroni (see 
‘Bonferroni correction’), Scheffé, Newman–Keuls, studentized range 
tests, Duncan, Gabriel’s test etc. The choice depends on the data and 
the statistical program available
The disadvantage of these methods is that they • tend to be 
conservative, i.e. they err on the side of non-signifi cance
If there is an ordering in the groups then use a • test for a trend 
across them using linear contrasts: for the caffeine data this gives 
P(trend)=0.006 (details omitted)

Bonferroni correction
The Bonferroni correction is a simple method to correct the cut-off for 
statistical signifi cance for multiple testing. It is based on the fact that if 
the null hypothesis of no differences between groups is true and a test is 
performed with P<0.05 taken as signifi cant, then the probability of a non-
signifi cant result is 0.95. From this it follows that if 10 independent tests 
are done, then the probability of none being signifi cant is 0.9510 = 0.60, 
by the multiplicative rule for probabilities (b Probability: properties, 
p. 208).

If α is the cut-off for signifi cance, then to preserve the signifi cance level 
at 0.05 we need (1–α)10 = 0.95. Because α is small, it can be shown that 
(1–α)10 is approximately equal to 1–10α (details omitted). For this to be 
equal to 0.95 we must have α = 0.05/10. Hence, in general if n tests are 
performed, the cut-off for signifi cance is 0.05/n. Bonferroni’s method tends 
to be very conservative but does avoid spurious signifi cant results.
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Extensions to the use of multiple comparisons procedures
Sometimes, a multiple comparisons procedure is used in settings other 
than analysis of variance, when a number of separate tests are performed 
and it is desirable to guard against the possibility that some may be signifi -
cant purely by chance alone. In such a situation, we are no longer testing 
individual hypotheses but a composite hypothesis. For example 
a study in ex-preterm babies explored risk factors for later respiratory 
morbidity and several different respiratory outcomes were analysed. 
A multiple comparisons procedure was used and the authors noted 
that: ‘the use of a multiple testing approach means that the individual 
hypotheses are no longer tested, but instead a composite hypothesis, 
respiratory morbidity* [emphasis added] (cough, frequent cough, cough 
without infection, wheeze, frequent wheeze, wheeze without infection 
and use of chest medicine), is tested. A variable that is associated with 
any of the outcomes after modifi cation of the P value is thus signifi cantly 
associated with the composite outcome’.1

Further details and extensions
For further reading on multiple comparisons, see Bland• 2

For further details and examples on one-way analysis of variance, see • 
Bland, Chapter 10,3 Armitage, Chapter 8,4 Altman, Chapter 95

For examples of one-way analysis of variance in SPSS and Stata, see • 
Peacock and Kerry, Chapter 106

The method of one-way analysis of variance can be extended to • 
include one or more covariates (b Multiple regression and analysis of 
variance, p. 412)

References
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Correlation and regression
Introduction
Correlation and regression (simple linear regression) are used to investi-
gate the relationship between two continuous variables. There are several 
forms of correlation. Pearson’s correlation is based on the Normal dis-
tribution while some other methods are based on the ranks of the data 
(b Rank correlation, p. 312). In this section we consider Pearson’s cor-
relation. The choice of whether to use correlation or regression depends 
on the question being answered.

Examples for correlation and regression

Correlation
Fig. 8.5a shows the relationship between two scores summarizing 
development in infants: one score came from a paediatrician assess-
ment (MDI) and the other from a parental questionnaire.1 The aim 
was to determine how closely these two scores were related and so 
the correlation coeffi cient was calculated (r=0.68, 95% CI: 0.52 to 0.79, 
P<0.0001).
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Regression
Fig. 8.5b shows the relationship between forced vital capacity (FVC) 
and age in a sample of school-age girls. The aim was to see how FVC 
increased with age and so regression analysis was used to give the equa-
tion of the line (y=0.305+0.193 x age).
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y=0.305+0.193 x age

Fig. 8.5 Graphs illustrating the use of: (a) correlation and (b) regression.

Correlation or regression?
Pearson’s correlation

It investigates the • strength of a linear relationship between 
two continuous variables, such as crown–heel length and head 
circumference in newborn babies
It is used when neither variable can be assumed to predict the other• 
It gives an estimate, the correlation coeffi cient, and a P value• 
A confi dence interval can also be calculated• 

Simple linear regression
It investigates the • nature of the linear relationship between two 
continuous variables, such as amount of exercise and weight in adults
It is used when investigating how one variable (the predictor variable) • 
affects the other (the outcome variable)
It gives the equation of the best fi tting straight line through the data • 
in the form of the intercept and slope of the line, with confi dence 
intervals
It allows the estimated slope to be tested against a null value of 0• 
It enables predictions to be made with confi dence intervals• 

Reference
1 Johnson S, Marlow N, Wolke D, Davidson L, Marston L, O’Hare A et al. Validation of a parent 

report measure of cognitive development in very preterm infants. Dev Med Child Neurol 2004; 
46(6):389–97.
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Pearson’s correlation
Details of the method

It is used to estimate the • strength of linear relationship between 
two continuous variables
It gives a correlation coeffi cient – often denoted by ‘• r’

The calculations are based on the differences between the observations xi, 
yi and their means –x and –y as shown in the formula below:

Formula

r
i i

i

n

i

n

i
i

n
= =

= =i

∑

∑ ∑i

( )x xi xx ( )y yiyy

x xi x ( )y yy

1

1

2

1

Where xi , yi are values of the n pairs of two variables

Interpretation of r
r•  tells us how close is the linear relationship between the two variables
r•  lies between –1 and +1
Negative values indicate a • negative linear relationship, i.e. as one 
variable increases, the other decreases
Positive values indicate a • positive linear relationship, i.e. as one 
variable increases, so does the other
r • = 0 indicates no linear relationship, i.e. the values of each variable 
are independent of each other
Values closer to –1 and +1 indicate stronger relationships, with –1 • 
showing a perfect negative linear relationship and +1 showing a perfect 
positive linear relationship

Tests and estimates
A signifi cance test can be done to test the • null hypothesis that 
r=0 using a statistical program or using tables of cut-off points for 
signifi cance such as those given in Bland, Chapter 11.1 An abridged 
version is shown in Table 8.10.
A confi dence interval can also be calculated by hand but has a • 
complicated formula – see Bland, Chapter 111 or use a statistical 
program. A 95% confi dence interval is rarely seen but provides useful 
additional information, particularly with small samples with a strong 
correlation but with a wide confi dence interval.

Statistical signifi cance and sample size
As with other estimates, statistical signifi cance of r is directly related to 
the sample size and so for small samples the correlation needs to be 
bigger to be signifi cant (see Table 8.10). But this also means that for large 
samples, small values of r may be statistically signifi cant even though the 
relationship is weak (see Fig. 8.6).
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Fig. 8.6 (a) The sample size is large (n = 1745) and so, although the correlation is 
very weak, r = 0.14, it is highly signifi cant. (b) The sample size is small (n = 64) and the 
correlation is very weak, r = 0.09, and is not signifi cant.
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Pearson’s correlation (continued)
Table 8.10 Abridged table of cut-offs for statistical signifi cance of 
correlation coeffi cient r at P<0.05 by sample size

Sample size 10 20 50 100 500 1000

Value at which r becomes signifi cant 
at P<0.05

0.63 0.44 0.28 0.20 0.09 0.06

Assumptions of Pearson’s correlation
1. The relationship is linear
It is important always to plot the data when doing a correlation analysis 
to check that the relationship really is linear. There may be a strong rela-
tionship which is not linear and so a linear correlation coeffi cient will give 
misleading results – see below.
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Fig. 8.7 Scatterplots illustrating non-linear relationships.
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Figure 8.7 shows simulated data with perfect relationships:
Figure 8.7a has r=0.89, suggesting a strong linear correlation, but the scat-
terplot clearly shows that the relationship is not linear
Figure 8.7b has r=0.05, suggesting no linear relationship. The scatterplot 
shows a strong relationship that is not linear, but quadratic.

2. Normal distribution
For the signifi cance test to be valid at least one of the two variables must 
follow a Normal distribution and for the confi dence interval to be valid, 
both variables must follow a Normal distribution. To check these assump-
tions, plot histograms/Normal plots. If the assumptions are not met, a transfor-
mation of the data may be used to correct for non-Normality (b Transforming 
data, p. 330) or a rank correlation used (b Rank correlation, p. 312).

0 Note that if the data are transformed, the correlation coeffi cient is 
not back-transformed.

3. Random sample
The sample of points xi, yi are assumed to be a random sample within 
the range of values of interest. This is important since the range of values 
affects r. If the range is artifi cially restricted, r will be too small. Conversely 
if two samples with different ranges are joined, r will be artifi cially infl ated – 
Figure 8.8 illustrates this.
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Fig. 8.8 Scatterplot of change in insulin growth factor (IGF)-1 and change in left 
ventricular mass in two treatment groups.

Figure 8.8 shows the relationship between change in insulin growth factor 
(IGF)-1 and change in left ventricular mass in two treatment groups. The overall 
r value was 0.55 but the authors reported values of 0.28 in the treatment group 
(rhGH) and 0.36 in the placebo group. The graph shows that the two samples 
hardly overlap and so by putting them together the range has been stretched 
and the correlation has been artifi cially infl ated (Bland and Peacock, p. 1261).

Reference
1 Bland M, Peacock J. Statistical questions in evidence-based medicine. Oxford: Oxford University 

Press, 2000.
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Correlation matrix
Exploring inter-relationships between variables
The correlation coeffi cient can be used to summarize how strong the 
relationship is between several pairs of continuous variables. This is par-
ticularly useful before doing multifactorial analyses as it shows how dif-
ferent variables are inter-related. This can be used to guide the analyses 
and help with the interpretation of results. An example of this is given in 
Table 8.11.

Example

Table 8.11 Correlation matrix showing the inter-relationships between 
baby anthropometry. BW, birthweight; HC, head circumference; UAC, 
upper arm circumference; CHL, crown–heel length

Correlations (P values) between four measures of anthropometry in 
198 newborn infants

BW HC UAC CHL

BW 1.00

HC 0.78 (<0.01) 1.00

UAC 0.83 (<0.01) 0.63 (<0.01) 1.00

CHL 0.79 (<0.01) 0.65 (<0.01) 0.59 (<0.01) 1.00

This correlations matrix shows that all measures of baby anthropometry 
are positively associated with each other as would be anticipated but that 
the strength of relationship varies for different pairs of measurements.

Non-continuous variables
A rank correlation matrix can be used to summarize several relationships 
in data that are not continuous or where there is a mixture of continuous 
and ordered categorical data (b Rank correlation, p. 312).
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Simple linear regression
Details of the method

Simple linear regression is used to estimate the • nature of the linear 
relationship between two continuous variables where one is regarded 
as the outcome and the other predicts the outcome. It gives the 
equation of the best straight line through the observed data:
y = a + b x
where y is the outcome, a is the intercept, b is the slope of the line, and 
x is the predictor variable
The calculations are based on formulae derived from minimizing • 
the differences between the observed values and the mean values 
predicted by the line – ‘least squares method’. Details of the 
derivation are given in Bland, Chapter 11.1 For each observed value, the 
difference between it and the value predicted by the model is known 
as the residual. The method of least squares is so called because it 
minimizes the sum of the squares of these residuals to give the line 
through the points that is closest to the data overall (Fig. 8.9)
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Fig. 8.9 A regression line showing the slope and intercept.



297SIMPLE LINEAR REGRESSION

Terminology
There is some variation in terminology for regression:

The • outcome variable is sometimes called the dependent or 
response variable
The • predictor variable is sometimes called the explanatory or 
independent variable
The • slope or gradient of the line is often called a regression 
coeffi cient This leads to general terminology for estimates in models 
with more than one predictor, as in multifactorial analysis (b Chapter 12, 
p. 393)

Calculations for simple linear regression
Simple linear regression can be done in all good statistical programs, but 
the calculations are reasonably straightforward and can be done by hand 
in small datasets using the following formulae:

Slope or regression coeffi cient is given by:

b
i i

i

n

i
i

n= =

=

∑

∑

( )x xi xx ( )y yiyy

( )x xi

1

2

1

The line goes through the mean point: (–x, –y)

Therefore the intercept is given by: a = –y – b–x

Interpretation of the equation
The • regression coeffi cient gives the change in the outcome (y) for 
a unit change in the predictor variable (x)
The intercept gives the value of • y when x is 0
The line gives the • mean or expected value of y for each value of x

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Simple linear regression (continued)
Tests and estimates

If there is no relationship between • x and y then the true regression 
coeffi cient b will be 0 (null value)
This can be tested using a form of t test• 
The regression coeffi cient • b can be a useful summary of the 
relationship if interested simply in how the two variables are related
95% confi dence intervals can also be calculated for • b
The equation of the line can be used for predictions (see below)• 

Assumptions of the regression method
1. The relationship is linear
As with correlation, it is important to plot the data before doing a regres-
sion analysis to check that the relationship is linear. If the relationship is 
steadily increasing (monotonic) but not linear, it may be possible to trans-
form the data to linearize the relationship (b Transforming data, p. 330).

Some non-monotonic relationships cannot be linearized and in this case 
it may be necessary to calculate a function of the data to make a good fi t, 
for example if the relationship is quadratic, this will need a function which 
includes x and x2. Such analyses need to be done using multiple regression 
(b Multiple regression, p. 406).

2. The distribution of the residuals is Normal
The statistical test for the regression coeffi cient and the calculation of the 
confi dence intervals are based on the t distribution and only hold if the 
residuals follow a Normal distribution. To test this, plot a histogram or do 
a Normal plot of the residuals.

3. The variance (standard deviation) of the outcome y is constant over x
The statistical test for the regression coeffi cient also makes the assumption of 
constant variance. This can be checked from the scatterplot. Alternatively 
plot the residuals against the predictor variable to see if the spread of the 
residuals varies across the range of the predictor (non-constant variance).
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Notes on assumptions
Sometimes non-linearity, non-Normality, and non-constant variance 
occur together and a transformation of the data may correct all three 
problems at the same time. If data are transformed, such as by applying a 
logarithmic transformation, the interpretation of the regression coeffi cient 
changes. See Peacock and Kerry, Chapter 9,2 for worked examples of this.

0 If we do the regression calculations the other way around (i.e. we swap 
x and y), we get a different equation and so it is important to use the 
right variables as the outcome and predictor variables.

Predictions
The regression equation can be used to estimate the mean value of the 
outcome for a given value of the predictor. These can apply in two situa-
tions: within and outside the sample.

Within-sample predictions provide the mean or expected value for 
the observed data using the estimated line. A 95% confi dence interval can 
be calculated for the prediction (details are given in Bland, Chapter 11,1 
and can be calculated using a statistical program).

Predictions outside the sample can also be made. These give the 
expected value for a new individual with a given value of the predictor. 
The prediction value is the same as for the within-sample prediction but 
the 95% confi dence interval is wider to refl ect the uncertainty about 
predictions in a new sample. Again details can be found in Bland.1

Two things are particularly important to note when using a regression 
equation to make predictions outside the sample:
0 Use the correct confi dence interval (see Fig. 8.11) otherwise the pre-
diction will appear to be more precise than it should be

0 Don’t make predictions outside the range of the original data since 
the form of the relationship may not be the same (see b Simple linear 
regression: example p. 300)

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Simple linear regression: example
This example uses data from a sample of school-age girls and inves-
tigates the relationship between their age in years and their forced 
vital capacity (FVC, in litres). A statistical program was used to do the 
calculations:

Fig. 8.10 Scatterplot of lung function against age in school-age girls.

The regression equation is y = 0.305 + 0.193x age
As age increases by 1 year, FVC increases by 0.193 litres• 
The signifi cance test for the coeffi cient for age gave t=5.34, P<0.001 • 
showing that there is strong evidence for a linear relationship
95% CI for the coeffi cient is 0. 121 to 0.266• 
The residuals were a good fi t to a Normal distribution (Fig. 8.11a)• 
There is no evidence that the relationship is not linear – see scatter • 
plot above and plot of age x residuals (Fig. 8.11b)
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Predictions
Figure 8.12 shows the predicted values, with a 95% confi dence interval for 
within-sample predictions (Fig. 8.12a) and predictions outside the sample 
(Fig. 8.12b). It is clear that the precision of the predictions outside the 
sample is much greater.
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0 Note the dangers of extrapolating outside the range of the data 
such as predicting mean FVC at age 50 from these data. It gives mean 
FVC=9.96 litres. This is clearly nonsensical and arises because FVC 
would not cont inue to increase once the girls reach adulthood. This 
extreme example illustrates the dangers of extrapolating outside the 
range of the data.

Fig. 8.12 Scatterplot with 95% confi dence interval for (a) within-sample predictions 
and (b) predictions outside the sample.
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Wilcoxon two-sample signed rank test 
(Mann Whitney U test)
Introduction to rank tests
The tests described previously, such as the two forms of the t test (for 
two independent means; for paired data) and regression and correlation, 
make fairly strong assumptions about the distribution of the data. In some 
circumstances these assumptions are not met either because the data 
have a non-standard distribution which cannot be transformed or because 
the data are inherently discrete rather than continuous. In these situa-
tions, tests based on the ranks of the data can be used.

All rank tests are based on the ranks or ordering of the data 
rather than on the actual data values themselves. This obviously leads 
to data being discarded and so, in general, rank tests are less powerful 
than tests which use all of the data, such as the t test when its assumptions 
are upheld.

Rank tests are sometimes called non-parametric tests because in 
general they make no assumptions about the distribution of the data. In fact 
the paired rank test does require the differences to follow a symmetrical 
distribution, and so some distributional assumptions are made although 
they are much less restrictive than the assumptions for the tests described 
previously in this chapter. For more details of rank tests see Conover.1

Details of the test
It is the analogue of the t test•  for two independent means
It compares ordinal data from two independent groups• 
It is based on the ranks•  of the data in each group
It gives a P value but no estimate•  of the difference between the groups
Given a table of cut-offs, the test is easy to do by hand for small samples, • 
but harder for larger samples as the data have to be ordered by hand
Note that it is often thought of as a test for small samples but this is • 
not so. In fact if the sample is very small (both smaller than four 
observations) then statistical signifi cance is impossible
The Wilcoxon signed rank test is mathematically equivalent to the • 
Mann Whitney U test and gives exactly the same P value. However, 
the calculations are different and the tables are different. The Wilcoxon 
calculations are slightly easier to do by hand and so these are shown here.

Null hypothesis
Observations from one group do not tend to have a higher or lower • 
ranking than observations from the other group
Note that this test • does not test the medians of the data as is 
commonly thought, it tests the whole distribution

Assumptions of test
The data are in two groups and can be ranked, and the difference is • 
symmetrically distributed

Reference
1 Conover WJ. Practical nonparametric statistics. 3rd ed. New York: Wiley, 1999.
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Wilcoxon two-sample signed rank test: 
calculations
How the Wilcoxon signed rank test works

The test is based on the probability distribution for the arrangement of • 
ranks, given a null hypothesis of no difference
Cut-off points are tabulated (see Table 8.12) or the test can be done • 
using a statistical program

To perform the test
Assume the two samples have sizes n1, n2:
1. Rank the data ignoring the groups
2. Give tied values the mean of their ranks
3. Add the ranks in each group separately to give T1 and T2
4. Compare the smallest of T1 and T2 with the tabulated values (Table 8.121) 

to determine statistical signifi cance. The test is statistically signifi cant if 
the observed value, T, is less than the tabulated value

Table 8.12 Two-sided 5% cut-offs for the Wilcoxon two-sample test

n2 4 5 6 7 8 9 10 11 12

n1

 4 10 11 12 13 14 14 15 16 17

 5 17 18 20 21 22 23 24 26

 6 26 27 29 31 32 34 35

 7 36 38 40 42 44 46

 8 49 51 53 55 58

 9 62 65 68 71

10 78 81 84

11 96 99

12 115

Note: n1 is the smaller sample size, i.e. n1<n2. The test is statistically signifi cant if T is 
less than the tabulated value.
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Summary statistics
The median or mean, or another percentile can be used as a summary 
measure. The choice is guided by the shape of the distribution – if it is 
symmetrical, then a mean may be best, otherwise the median or a more 
extreme percentile may be most useful. A 95% confi dence interval can be 
calculated for the difference in means or medians if the distributions are 
similar in shape (see Altman2 for details ).

Reference
1 Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Oxford: 

Blackwell Science, 2002.
2 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London BMJ Publishing Group, 2000.
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Wilcoxon two-sample signed rank test: 
example
The data shows urinary B-thromoglobulin excretion in 12 healthy and 
12 diabetic patients:1

Healthy patients Diabetic patients

4.1 11.5

6.3 12.1

7.8 16.1

8.5 17.8

8.9 24

10.4 28.8

11.5 33.9

12.0 40.7

13.8 51.3

17.6 56.2

24.3 61.7

37.2 69.2
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The box plots show that the values in the two groups have different 
shaped distributions. The differences between the two groups can be 
tested using a rank test. 

Table 8.13 shows the data ranked ignoring the group and with the name 
of the group given alongside.

Fig. 8.13 Box plots comparing distributions in two groups.
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Table 8.13 Urinary β-thromoglobulin excretion values and ranks in 
diabetic patients and in healthy patients

B-thromoglobulin Rank Group

 4.1 1 Healthy

 6.3 2 Healthy

 7.8 3 Healthy

 8.5 4 Healthy

 8.9 5 Healthy

10.4 6 Healthy

11.5 7.5 Healthy

11.5 7.5 Diabetic

12 9 Healthy

12.1 10 Diabetic

13.8 11 Healthy

16.1 12 Diabetic

17.6 13 Healthy

17.8 14 Diabetic

24 15 Diabetic

24.3 16 Healthy

28.8 17 Diabetic

33.9 18 Diabetic

37.2 19 Healthy

40.7 20 Diabetic

51.3 21 Diabetic

56.2 22 Diabetic

61.7 23 Diabetic

69.2 24 Diabetic

The sum of ranks in the healthy patients is: • 
1+2+3+4+5+6+7.5+9+11+13+16+19=96.5
The sum of ranks in the diabetic patients is:• 
7.5+10+12+14+15+17+18+20+21+22+23+24=203.5
From the table of cut-offs, the smaller total, 96.5, is less than the • 
cut-off (115) for n1=12, n2=12 and so P<0.05

Hence there is good evidence that urinary B-thromboglobulin excretion 
is greater in diabetic patients than in healthy patients.

Reference
1 Hand DJ. A handbook of small data sets. London: Chapman & Hall,1994.
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Wilcoxon matched pairs test
Details of the test

This is the analogue of the t test for paired (matched) data• 
It compares ordinal data from paired samples• 
It is based on the signs of the differences in the pairs and the relative • 
sizes of differences rather than the actual values
It gives a P value but no estimate of the difference between the • 
groups
Given a table of cut-offs, the test is easy to do by hand for small • 
samples, but harder for larger samples as it requires the data to be 
manually ordered
It is often thought of as a test for small samples but this is not so. In • 
fact if the sample is smaller than 6, then statistical signifi cance is 
impossible

Null hypothesis
The distribution of differences is symmetrical about zero• 

Assumptions of test
The data are one-to-one matched and differences can be calculated • 
and ranked, i.e. data must be interval (b Types of data, p. 178)
The sample differences come from a population with a symmetrical • 
distribution
If the differences are skewed, a transformation may correct this • 
(b Transforming data, p. 330)
Note that the test cannot be used if many differences are zero, as zero • 
differences are omitted (see opposite)

How the Wilcoxon matched pairs test works
The test is based on the probability distribution for the arrangements • 
of the ranks of the differences, given the null hypothesis of symmetry 
about 0
Cut-off points are tabulated for small sample sizes (Table 8.14) or the • 
test can be done using a statistical program
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To perform the test
1. Rank the differences ignoring the sign and omitting any zero 

differences
2. Give tied values the mean of their ranks
3. Add the ranks of the positive and negative differences, T+, T–
4. If the distribution of differences is symmetrical about zero, then T+, T– 

will be similar
5. The smaller of T+, T– is compared with tabulated values (see Table 8.14) 

to determine statistical signifi cance

Table 8.14 Two-sided 5% cut-off points for Wilcoxon matched pairs 
test (Bland1)

Sample size Cut-off

6 1

7 2

8 4

9 6

10 8

11 11

12 14

13 17

14 21

15 25

16 30

17 35

18 40

19 46

20 52

21 59

22 66

23 73

24 81

25 90

Note: the smaller of T+, T– is used. The test is statistically signifi cant if the observed 
value, T, is less than the tabulated value.

Reference
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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Wilcoxon matched pairs test: example
Table 8.15a,b Thickness of the cornea (microns) in patients with one 
eye affected by glaucoma; the other eye is unaffected1

(a)

Patient no. Affected 
eye

Unaffected 
eye

Difference Summary statistics 
for differences:

1 488 484 +4 Mean:    –4

Median: –3

Range: –16 to +12
2 478 478  0

3 480 492 –12

4 426 444 –18 Differences 
are reasonably 
symmetrical so test 
can be used

5 440 436 +4

6 410 398 +12

7 458 464 –6

8 460 476 –16

(b) The test:

Patient no. Affected 
eye

Unaffected 
eye

Difference Rank 
(ignoring sign)

1 488 484 +4 1.5

2 478 478  0

3 480 492 –12 4.5

4 426 444 –18 7

5 440 436 +4 1.5

6 410 398 +12 4.5

7 458 464 –6 3

8 460 476 –16 6

T+ = 1.5 + 1.5 + 4.5 =7.5
T–  = 4.5 + 7 + 3 + 6 = 20.5

From the table, when n=8, the cut-off for signifi cance is 4.
7.5 is greater than this so the differences are not signifi cant, P>0.05 (the 
exact P value is 0.32 from a statistical program).

Therefore we conclude that there is no evidence for any differ-
ence in corneal thickness in affected and unaffected eyes.
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Sign test for matched pairs
The sign test can also be used for matched data. It is simpler than the 
Wilcoxon test and is based on the number of positive and negative differ-
ences only. It does not take account of the size of the differences at all. If 
the distribution of the differences were truly symmetrical about zero (null 
hypothesis) then the number of positive and negative differences would 
be similar. The test is based on the exact Binomial distribution to calculate 
the probability of the observed number of positive and negative differ-
ences to see if this is implausibly small (i.e. <0.05).

Since the sign test ignores the sizes of the differences it is less powerful 
than the Wilcoxon matched pairs test. This can be seen if we use the sign 
test with the corneal thickness data in Table 8.15.

Sign test using the corneal thickness data
This can be done using a statistical program and we get P=1.00• 
The calculations below are given to show how it works and to give • 
another demonstration of the Binomial distribution (b Binomial 
distribution: formula, p. 212)
For the corneal thickness data there are four negative and three • 
positive differences
If the null hypothesis were true then Prob(positive difference) = • 
Prob(negative difference) = 0.5
Therefore the probability of the observed data or data more • 
extreme is given by:

[Prob(4 negative + 3 positive) + Prob(5 negative + 2 positive)
+ Prob(6 negative + 1 positive) + Prob(7 negative)] x 2

(it is multiplied by 2 to give the two-sided test)

Each of these probabilities can be calculated using the Binomial • 
distribution formula (b Binomial distribution: formula, p. 212)
The overall probability can be shown to be: • 
(35 x 0.57 + 21 x 0.57 + 7 x 0.57 + 0.57 ) x 2 =1.0 as given by the 
statistical program

Note that the sign test is clearly non-signifi cant. It gives a greater P value 
than the P value from the Wilcoxon matched pairs test, refl ecting the 
lower statistical power.

Reference
1 Hand DJ. A handbook of small data sets. London: Chapman & Hall, 1994.
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Rank correlation
Introduction
Pearson’s correlation requires that at least one of the two variables 
follows a Normal distribution and that the relationship is linear. If these 
assumptions do not hold and the data cannot be transformed, then rank 
correlation may be used. There are two forms of the rank correlation 
coeffi cient: Spearman’s rho and Kendall’s tau. Both test the same null 
hypothesis and have the same assumptions but they work in different 
ways and for some situations, one may be preferred to the other (see 
boxes on this page).

Null hypothesis for rank correlation
There is no tendency for one variable either to increase or to decrease • 
as the other increases

Assumptions
The variables can be ranked• 
The relationship between the variables either increases or decreases • 
(i.e. it is monotonic)

Spearman’s rho (ρ)
This is calculated using same formula as for Pearson’s correlation but • 
uses the ranks of the data rather than the data values themselves
It gives a value between –1 and +1 but there is no straightforward • 
interpretation of ρ regarding the strength of association
P values can be obtained from a statistical program• 
For sample sizes greater than 10, the coeffi cient • ρ follows an 
approximate Normal distribution and P values can be obtained from 
Normal distribution tables by calculating:
p n −1 , which follows a Standard Normal distribution with mean 0 
and standard deviation 1
0 • If there are ties use Kendall’s tau-b

Kendall’s tau
This is more complicated to calculate than Spearman’s • ρ and is 
based on the probability distribution of the orderings of the pairs of 
variables – whether they are concordant, discordant or tied
Kendall’s tau is the proportion of concordant pairs minus the • 
proportion of discordant pairs. For a worked example, see Bland, 
Chapter 121

It gives a value between –1 and +1 where +1 indicates all pairs are • 
ordered in the same way and –1 indicates they are all ordered in the 
opposite way. This is therefore a meaningful measure of strength 
of association
If there are ties use modifi ed formula: tau-b• 
tau-a and tau-c give alternative ways of dealing with ties• 
For further reading see Conover• 2 
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Which rank correlation to use: Spearman’s or Kendall’s?
If a signifi cance test only is required it doesn’t matter which is used• 
Spearman’s • ρ is easier to calculate and may be preferable if the 
calculations need to be done by hand
If an estimate of the strength of correlation is needed use Kendall’s tau• 
If there are many ties use Kendall’s tau-b• 

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Conover WJ. Practical nonparametric statistics. 3rd ed. New York: Wiley, 1999.
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Rank correlation: example
The data in Figure 8.14 and Table 8.16 show the relationship between 
percentage unemployed and suicide rate per million in 11 US cities.1
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The data: 

•  Relationship not linear 

•  Both variables skewed 

•  Use rank correlation 

Fig. 8.14 Scatterplot of unemployment against suicide rate in 11 US cities.

Table 8.16 Percentage unemployment and suicide rates in 11 US 
cities1

City Unemployed Suicide 
rate

Rank 
(unempl)

Rank 
(suicide)

Boston 2.5 71 1 1

New York 3 72 3.5 2

Washington 2.7 81 2 3

Chicago 3 82 3.5 4

Pittsburgh 4.4 86 9 5

Philadelphia 3.2 92 6 6

St Louis 3.1 102 5 7

Detroit 3.8 104 8 8.5

Cleveland 3.5 104 7 8.5

Los Angeles 4.7 224 10 10

San Francisco 4.8 235 11 11
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Since there are some ties we will use Kendall’s tau-b rather than • 
Spearman’s ρ
Looking at the data, we see that the ordering of ranks for • 
unemployment is mostly the same as that of suicide and so we would 
expect that Kendall’s tau-b will be positive and reasonably close to 1.0
Using a statistical program gives tau-b = 0.76, P=0.002• 
This therefore shows that there is a moderately strong positive • 
correlation between city-level unemployment and suicide rates 
and this is statistically signifi cant.

Footnote: There were two outlying points in the upper right hand 
portion of the graph (Los Angeles and San Francisco). The calcula-
tions were repeated without these as a sensitivity analysis. This gave 
a smaller value for tau-b, 0.63 with P=0.03, illustrating how outlying 
points can affect the correlation coeffi cient, although in this case the 
conclusions are broadly unchanged.

Reference
1 Hand DJ. A handbook of small data sets. London: Chapman & Hall, 1994.
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Survival data
Introduction
Survival or time-to-event data are used when the focus of attention is a 
length of time between two events such as diagnosis and death, or treat-
ment for fertility and conception. Survival methods are used to cal-
culate survival (time-to-event) probabilities. For example, in studies 
of survival after breast cancer diagnosis, survival methods are used to 
calculate the probability that women will survive for 5 or 10 years. Such 
techniques are used to compare treatments and to provide information to 
patients about their likely prognosis.

Censoring
One of the problems with survival data is that at the time the data are 
analysed some patients will not have experienced the event of interest 
and so their time of survival will only be known up to that point. Also, 
some patients are lost to follow-up before the study ends. Both types of 
data without fi rm survival times are known as censored data.

Survival methods are clever in that they allow censored data to be 
incorporated into the calculations so that they effectively contribute 
information up to the point at which no further information is known. 
Figure 8.15 depicts data such as those described where some patients 
have a known event and for some the outcome is unknown.

Survival time in months 

0 6 12 18

|----------

|-------------

|------------------------

|-------------------------------

|----------------------------------------

|-----------------------------------------------

Known outcome 

Unknown outcome

(censored)

Fig. 8.15 Schematic diagram showing patient outcome in a survival study.

Calculating survival probabilities
We will illustrate the calculations using all data from a health district reg-
ister of babies born with cystic fi brosis who were analysed 30 years after 
the register began. The data are shown in Table 8.17.
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Table 8.17 Survival times for a sample of patients with cystic fi brosis

ID no. Length of 
survival 
(years)

Outcome 
D/C

ID no. Length of 
survival 
(years)

Outcome 
D/C

1 14  D 17 0 D 

2 29 C  18 0 D 

3 28 C  19 11 C  

4 12 D  20 10 C  

5 8 D 21 9 C 

6 27 C  22 9  C 

7 27 C  23 9  C 

8 25 C  24 7  C 

9 21 C  25 7  C 

10 14 D  26 5  C 

11 20 C  27 4  C 

12 11 D  28 3  C 

13 17 C  29 3  C 

14 16 C  30 3  C 

15 16 C  31 3  C 

16 12 C  32 2  C 

D=died; C=censored

To calculate the survival probabilities we calculate the following:
x = age in years• 
n• x = no. at that age
c• x = no. censored at that age
d• x = no. of deaths
q• x = probability of death = dx/nx
p• x = probability of surviving to age x = 1 – qx
P• x = cumulative probability of surviving x years), i.e. probability of 
surviving in year x given that they survived to the start of year x)
= px  Px–1



318 CHAPTER 8 Statistical tests

Survival data (continued)
Calculating survival probabilities for the cystic fi brosis data

Table 8.18 Calculations of survival probability for cystic fi brosis data

x nx cx dx qx px Px

0 32 0 2 0.0625 0.9375 0.9375

1 30 0 0 0 1 0.9375

2 30 1 0 0 1 0.9375

3 29 4 0 0 1 0.9375

4 25 1 0 0 1 0.9375

5 24 1 0 0 1 0.9375

6 23 0 0 0 1 0.9375

7 23 2 0 0 1 0.9375

8 21 0 1 0.0476 0.9524 0.8929

9 20 3 0 0 1 0.8929

10 17 1 0 0 1 0.8929

11 16 1 1 0.0625 0.9375 0.8371

12 14 1 1 0.0714 0.9286 0.7773

13 12 0 0 0 1 0.7773

14 12 0 2 0.1667 0.8333 0.6478

15 10 0 0 0 1 0.6478

16 10 2 0 0 1 0.6478

17 8 1 0 0 1 0.6478

18 7 0 0 0 1 0.6478

19 7 0 0 0 1 0.6478

20 7 1 0 0 1 0.6478

21 6 1 0 0 1 0.6478

22 5 0 0 0 1 0.6478

23 5 0 0 0 1 0.6478

24 5 0 0 0 1 0.6478

25 5 1 0 0 1 0.6478

26 4 0 0 0 1 0.6478

27 4 2 0 0 1 0.6478

28 2 1 0 0 1 0.6478

29 1 1 0 0 1 0.6478
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Explanation of calculations
It is possible to estimate the probability of dying at each time point • 
when there is a death
At birth (x=0) there were 32 babies, of whom 2 died during the fi rst • 
year so the estimated probability of death is 2/32=0.0625, giving a 
probability of survival of 1–0.0625=0.9375
No baby died during the second year (x=1) so the estimated • 
probability of death is 0 for that time period and the probability of 
survival is 1. The cumulative probability of survival remains the same at 
0.9375
During the third year (x=2), 1 baby was censored but none died so the • 
probability of death is 0 and probability of survival is 1 for that time 
period and the cumulative probability of survival remains the same at 
0.9375
The calculations continue in this way with the n• x reducing as subjects 
are removed due to death or censoring
During the ninth year (x=8) one subject died. There were 21 alive at • 
the beginning of the interval so the probability of death is estimated 
as 1/21=0.0476 and probability of survival is 1 – 0.0476=0.9524. The 
cumulative probability of survival changes to 0.9375 x 0.9524=0.8929
Where there is a death and a censored patient in the same time period, • 
it is assumed that the censored subject is still ‘at risk’ when the subject 
dies so that the censored subject is counted in the number at risk when 
calculating the probability of death
The calculations continue until all deaths have been accounted for• 
The calculations show the estimated probability of surviving different • 
numbers of years. For example the probability of surviving to age 12 is 
0.83 or 83% (to age 12, x=11 row)
The calculations show that 65% of subjects with cystic fi brosis lived for • 
28 years (to age 29)
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Kaplan–Meier curves
Graphs for survival data
Survival probabilities can be depicted graphically in a Kaplan–Meier curve 
(Fig. 8.16). The x-axis depicts the length of survival time and the y-axis 
depicts the cumulative survival probability. This only changes when there 
is a death and so the graph is not smooth but is stepped. The vertical 
dashes on the line show the points at which subjects were censored.
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Fig. 8.16 Kaplan–Meier curve for the cystic fi brosis data.

Interpreting the curve
We can read off the cumulative survival probabilities from the curve• 
Note that at the extremes of the curve, the estimated survival • 
probability is based on few subjects and so is not very precise. Figure 
8.17 shows the 95% confi dence bands around the curve. These 
illustrate the precision at different points on the curve. The numbers 
surviving are shown below the x-axis.
Median survival which is the time for which half of the subjects survive, • 
can be a useful summary measure and is often reported in research 
reports. This can be read off the Kaplan–Meier curve as long as the 
curve dips below the ‘0.50 survival’ point on the y-axis, which is not the 
case for these data
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Precision of the survival estimates
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The 95% confi dence interval bands show the reduced precision at the • 
right hand end of the curve where the calculations of survival are based 
on fewer subjects
The cumulative survival probability at age 29 is 65% and this has a wide • 
95% confi dence interval from 38% to 82%

Assumptions of calculations
The censored cases are from the same population as those who died • 
during the study period
If cases are censored because they were still alive when the study • 
ended, then we are assuming that survival rates are constant over time
This can be checked by comparing survival of early and late entrants• 
When cases are censored because they cannot be traced, the • 
censoring is self-selected. If there are many like this, the calculations 
may not be valid, especially if the non-contact is related to survival.

Fig. 8.17 Kaplan–Meier curve for cystic fi brosis data with 95% confi dence interval 
bands.
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Logrank test
Introduction
If there is more than one group we can draw multiple curves on one 
graph. If we want to compare the survival in two groups using a statistical 
test then we need a method that will compare the whole curve for each 
group, rather than choose only certain time points for testing. The logrank 
test will do this.

Details of the test
It is based on comparing the whole curve for each group• 
It uses all of the survival data• 
It is based on differences between observed and expected values • 
assuming survival is the same in two groups
It uses a form of chi-squared test• 
It is a signifi cance test only and gives a P value but no estimate of the • 
difference in survival

Null hypothesis
There is no tendency for survival time to be shorter in one group than • 
in the other

Assumptions
Subjects who are censored have the same probability of an event • 
as those who are fully followed up, i.e. censoring is not related to 
prognosis
There is no tendency for one group to have better survival at early • 
time points and worse at later time points. If this were true the curves 
would diverge and then cross
The test makes no assumptions about shape of survival curve• 

The calculations
To illustrate the logrank test we will use data from a study of survival in 
2820 women with bilateral carcinoma of the breast,1 and will compare 
survival among 51 women with synchronous tumours and 49 with meta-
chronous tumours (Tables 8.19–8.22 and Fig. 8.18). Women still alive at 
the time of analysis were regarded as ‘censored’ (56) as were those lost to 
follow-up (6) and those who died of unrelated causes (4).

The calculations are usually done using a statistical program but hand 
calculations are given to show how the method works.

Reference
1 Graham MD, Yelland A, Peacock J, Beck N, Ford H, Gazet JC. Bilateral carcinoma of the breast. 

Eur J Surg Oncol 1993; 19(3):259–64.
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Logrank test: example
Table 8.19 Group 1: women with synchronous tumours (n=51)

ID Time
(months)

Outcome ID Time 
(months)

Outcome

1 0.5 Censored 27 51 Died

2 0.5 Censored 28 52 Censored

3 1 Died 29 52 Died

4 1 Died 30 55 Censored

5 2 Censored 31 59 Censored

6 3 Died 32 59 Censored

7 4 Died 33 68 Died

8 5 Died 34 73 Censored

9 6 Censored 35 75 Died

10 6 Censored 36 76 Censored

11 8 Died 37 81 Censored

12 9 Censored 38 81 Censored

13 9 Died 39 84 Died

14 14 Died 40 89 Died

15 17 Censored 41 105 Censored

16 18 Censored 42 112 Censored

17 18 Censored 43 115 Censored

18 18 Censored 44 119 Censored

19 24 Censored 45 119 Censored

20 24 Died 46 129 Censored

21 26 Censored 47 130 Died

22 26 Censored 48 131 Censored

23 31 Censored 49 146 Censored

24 39 Censored 50 163 Censored

25 48 Died 51 179 Died

26 50 Died
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Table 8.20 Group 2: women with metachronous tumours (n=49)

ID Time 
(months)

Outcome ID Time 
(months)

Outcome

52 4 Died 77 110 Died

53 15 Died 78 117 Censored

54 23 Died 79 118 Censored

55 26 Censored 80 119 Died

56 30 Died 81 124 Censored

57 34 Died 82 129 Censored

58 36 Died 83 130 Censored

59 42 Died 84 133 Died

60 49 Censored 85 138 Censored

61 57 Censored 86 140 Censored

62 58 Died 87 142 Died

63 69 Censored 88 144 Censored

64 74 Censored 89 145 Censored

65 80 Censored 90 146 Censored

66 81 Censored 91 149 Censored

67 81 Censored 92 155 Censored

68 81 Censored 93 155 Censored

69 81 Censored 94 156 Censored

70 86 Censored 95 168 Censored

71 89 Died 96 182 Censored

72 89 Died 97 206 Censored

73 92 Censored 98 211 Censored

74 92 Died 99 218 Censored

75 93 Censored 100 219 Censored

76 94 Censored
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Table 8.21 Extract of table of calculations for logrank test

Time 
(months)

Group Outcome Number at risk Number of deaths Probability death Expected numbers

synchro metach total synchr metach total synchro metach

0 synchron 0 51 49 100 0 0 0 0 0 0

0 synchron 0 0 0 0

1 synchron 1 49 49 98 2 0 2 0.020408 1 1

1 synchron 1 0 0 0

2 synchron 0 47 49 96 0 0 0 0 0 0

3 synchron 1 46 49 95 1 0 1 0.010526 0.484211 0.515789

4 synchron 1 45 49 94 1 1 2 0.021277 0.957447 1.042553

4 metachro 1 0 0 0

And so on until…….

179 synchron 1 1 5 6 1 0 1 0.166667 0.166667 0.833333

182 metachro 0 0 5 5 0 0 0 0 0 0

206 metachro 0 0 4 4 0 0 0 0 0 0

211 metachro 0 0 3 3 0 0 0 0 0 0

218 metachro 0 0 2 2 0 0 0 0 0 0

219 metachro 0 0 1 1 0 0 0 0 0 0

TOTALS 12.37882 21.62118
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Table 8.22 Explanation of calculations for the logrank test

How the calculations work

The synchronous and metachronous groups are denoted by S and M, 
respectively

The logrank test works by dividing survival scale into intervals according to • 
the observed survival times. Censored survival times are ignored
For each time period the observed data are compared with the expected • 
values if the null hypothesis is true, i.e. there is no difference in survival 
between the groups
In the fi rst month (rows 1–2) there were 2 censored observations in • S 
(denoted by ‘0’). These give no information about the probability of death in 
this interval so the estimated probability of death is 0
In the second month (rows 3–4) the number at risk was reduced by 2 to allow • 
for 2 subjects censored in the fi rst month. There were 2 deaths in S
98 subjects were therefore at risk and 2 died so assuming equal risk of death • 
in S and M, the estimated probability of death is 2/98=0.020 408
The probability is multiplied by the number of subjects in • S and M to give the 
expected numbers of deaths:  49 × 0.020408 = 1 and 49 × 0.020408 = 1
Note that the expected numbers are 1 in each group because there are equal • 
numbers in the groups at this point. This is not usually the case, as can be seen 
in row 6, 3 months, where there is one death giving a the probability of death, 
1/95 = 0.010 526 and expected numbers in the two groups 46 × 0.010 526 = 
0.484 211 and 49 × 0.010 526 = 0.515 789
The calculations continue in this way until all events have been accounted for• 
The expected numbers of deaths are then summed for both • S and M
Observed numbers are compared to those expected using a chi-squared test • 
as for a two-way table. 
We therefore calculate: • 

(O E )

E
+

(O E )

E
s s

2

s

m m
2

m

− −E ) (O

Where Os is the observed number of deaths in group S and Es is the expected 
number and conversely Om, Em for deaths in group M. If the null hypothesis is 
true, then this expression follows a chi-squared distribution with 1 degree of 
freedom. 

For these data this gives:

( )
+

( )
P

2 2( )
12 38 21 62

5 57 0P 018
) ( = 5 57 P

. .
. .57 0P
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Logrank test: interpreting the results
Kaplan–Meier curves for the two groups
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The results
The P value is 0.018 which is clearly signifi cant and gives good evidence • 
that there is a difference in survival between women with synchronous 
and metachronous tumours, with the former group having poorer 
survival rates
The method assumes that the censored women have the same • 
probability of survival as those who were fully followed up. If 
many women were lost to follow-up this would cast doubt on the 
calculations, particularly if this was related to survival
An estimate of the difference in survival between the two groups • 
can be obtained using Cox regression – the hazard ratio, but this 
requires fi rmer assumptions about the relationships, namely that the 
hazards or death rates are proportional at all time points (see b Cox 
proportional hazards regression, p. 428)
The logrank test can be extended for comparing more than two groups• 

Fig. 8.18 Kaplan–Meier curves comparing two groups.
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Transforming data
Introduction
Many statistical methods make assumptions about the data that, if not 
met, will lead to dubious test results. Transformations can be used for the 
following reasons:

Common reasons for transforming data
Normal distribution• : to make skewed data more closely fi t a 
Normal distribution
Variance: • to stabilize variance, i.e. make the variability more 
constant either in groups or across a range, as appropriate
Linearity• : to make curved relationships linear

Logarithmic transformation
Used for data that are quite highly skewed to the right (positive skew) • 
or where the group standard deviations increases with the group means
Raw data are transformed and calculations done on the log scale, then • 
the estimates are back-transformed
0•  P values are not back-transformed

Example
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Fig. 8.19 Histograms showing forced residual capacity in 65 preterm babies at 14 days 
(a) before and (b) after a logarithmic transformation.
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The data
Figure 8.19 shows that the raw data are positively skewed but that after 
log-transformation, the distribution is reasonably symmetrical.

Table 8.23 Data for the fi rst 10 babies, as measured and log-trans-
formed [loge(FRC)]

ID FRC Loge(FRC)

1 11.31 2.426

2 38.90 3.661

3 23.00 3.135 Calculations for all 65 babies

Mean FRC = 19.17• 

Mean log(FRC) = 2.910• 

Anti-log to give:• 
geometric mean = 18.36

4 20.60 3.025

5 26.00 3.258

6 19.30 2.960

7 22.20 3.100

8 17.20 2.845

9 12.70 2.542

10 15.90 2.766

etc to subject 65

Back-transforming log-transformed data for single group
To back-transform log data use the • anti-log or exponential function
Back-transformed means given • geometric mean (b Geometric 
mean, p. 188)
Standard deviation (SD) cannot be back-transformed • because the 
antilog of the SD on log scale will not be in the original units and so is 
meaningless
To get confi dence intervals, do the calculations on the log scale and • 
back-transform the 2 limits. This gives the confi dence interval for the 
geometric mean 
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Transforming data: comparing means
Using transformations to compare means in two groups

Example

For example, to compare FRC at 14 days in babies who developed 
bronchopulmonary dysplasia (BPD) and in those who did not (b t test 
for two independent means: example, p. 254). The data were positively 
skewed (Fig. 8.19). To allow for this, data were log-transformed and a 
t test done on the log scale data. This gave:

Table 8.24 Results of t test before and after transformation

Raw data (not transformed) 

BPD No. Mean SD 95% CI

No 38 21.44 6.07

Yes 27 15.97 3.82

Log-transformed data

No 38 3.0277 0.2761

Yes 27 2.7436 0.2403

Difference 0.2841 0.1524 to 0.4158

t = 4.31, degrees of freedom = 63, P = 0.0001

Note that the SDs are quite different for the raw data but the log-• 
transformation has corrected this (Table 8.24)
Antilog difference (0.2841) to give • ratio of geometric means = 1.33
Antilog 95% CI for difference to give • 95% CI for ratio of geometric 
means: 1.16 to 1.52
This is interpreted as showing that mean FRC at 14 days was 33% • 
greater for babies with BPD than for babies without BPD, with a 95% 
CI 16% to 52%

Using transformations with paired means
If differences do not follow a Normal distribution, then a • 
transformation can be used
Transform the individual data•  not the differences
Back-transform the mean difference to give the • ratio of the geometric 
means. If the paired data are before and after measurements then this 
is interpreted as the ratio of the two geometric mean measurements
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Transforming data: regression and 
correlation
Regression and correlation
Regression and correlation make assumptions about the distribution of 
the data, the homogeneity of the variance for different values of x, and 
the linearity of the relationship. In general, where data follow a positive 
skewed distribution, the variance will increase as the mean increases and 
relationships with other variables may not be linear. In such situations, the 
logarithmic transformation will reduce the skewness and make the vari-
ance more homogeneous, and linearize relationships with other variables.

Figure 8.20 shows the effect of transformation on data in an ecological 
study of free school meals and tuberculosis (TB) rates (b Bland and 
Peacock, p. 122–31). 

Scatter plot with linear regression line

0
1
0

2
0

3
0

4
0

T
B

 i
n
c
id

e
n
c
e
 p

e
r
 1

0
0

0
0
0
 p

o
p
u
la

t
io

n

0 20 40 60 80

Free school meals (% children)

There are more TB values in the lower half of the graph showing that • 
TB rate is positively skewed
The variance is not constant but increases from left to right• 

Fig. 8.20 Relationship between free school meals and tuberculosis rate.
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Scatter plot with log(TB) and linear regression line
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Log TB rate is more symmetrical in Figure 8.21• 
The variance (spread) is more even as we move from left to right• 
The straight line is a slightly better fi t than in the graph opposite • 

 Fig. 8.21 Relationship between free school meals and log-transformed tuberculosis 
rate.

Comments
In this example, transformation has corrected the skewness, non-• 
constant variance and slight non-linearity. However, the effect is 
modest and the correlation coeffi cient only increases from 0.44 to 0.46
In other situations the effect may be more marked, particularly with a • 
larger dataset
Note that in some situations the relationship between two variables • 
may be approximately linear within a given range but not outside that 
range. An example of this is the age and lung function data in children 
(b Simple linear regression: example, p. 300) where a straight line 
relationship gave a reasonable fi t between the limited ages studied but 
would not hold if the age range was extended towards adulthood

Reference
1 Bland M, Peacock J. Statistical questions in evidence-based medicine. Oxford: Oxford University 

Press, 2000.
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Transforming data: options
Positively skewed data

Log transform•  – good for moderate skewness such as found in many 
biochemical variables
Reciprocal • – good for high skewness such as survival data
Square root•  – good for slight skewness such as often seen in counts

Angular transformation for proportions
This transformation can be useful when summarizing a set of • 
proportions. For example, in a study comparing proportions of patients 
referred for X-ray in all general practice surgeries in two regions where 
we calculate the proportion referred in each practice and then average 
these proportions in each of the two regions
The proportions do not usually follow a Normal distribution and the • 
variances are not constant

To correct this, we can use the arcsine square root transformation 
where p is the proportion, arcsin( )  is the angle whose sine is the 
square root of p. Values of this can be found in tables or using a statistical 
program (for further details see Bland, Chapter 101).

Size of sample
If the sample is small, use experience and trial-and-error to get best fi t • 
to Normal distribution
If the sample is large, there are mathematical methods to help decide • 
which to use (see Healy2)

Zeros
0 Zeros cause diffi culty with many transformations: for example log(0)  
does not exist, and 1/0 is undefi ned

Therefore, zeros have to be dealt with differently• 
One possibility is to add a very small number, such 0.1, to any zeros to • 
allow a transformation to be made
If there are many zeros, then a suitable transformation may not be • 
found because of the shape of the distribution

Preference
Sometimes no transformation completely corrects the skewness in a 
dataset – one transformation may slightly over-correct and another may 
slightly under-correct. In such cases, and where the log-transformation 
improves the symmetry, use this transformation since its results can be 
back-transformed to provide estimates and confi dence intervals. 

Back-transforming means
After using log transform

Means, and differences of means, on the transformed scale are back-• 
transformed to give geometric means, and ratios of geometric means, 
respectively
Confi dence intervals are back-transformed to give limits for geometric • 
mean, and ratio of geometric mean, respectively

0 SDs and variances cannot be back-transformed
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After using reciprocal transformation
Single means and their confi dence intervals can be back-transformed • 
(harmonic mean)

0 Differences of means and their confi dence intervals cannot be back-
transformed

0 SDs can never be back-transformed

After using a square root transformation
Single means and their confi dence intervals can be back-transformed• 

0 Differences of means and their confi dence intervals cannot be back-
transformed

0 SDs can never be back-transformed

Back-transforming in regression and correlation
Regression: y-variable log-transformed

The regression coeffi cients and their confi dence intervals are anti-• 
logged
Interpretation: back-transformed coeffi cients are ratio of outcome • 
divided by the outcome with one unit lower value of x

Correlation: either or both variables log-transformed
Correlation coeffi cient is dimensionless and so is not back-transformed• 

P values
0 These are never back-transformed

Further examples
For several worked examples where data were transformed and the 
results back-transformed, see Peacock and Kerry, Chapter 93.

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Healy MJ. The disciplining of medical data. Br Med Bull 1968; 24(3):210–14.
3 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Diagnostic studies

Introduction
In this chapter we describe how statistical methods are used in diagnostic 
testing to obtain different measures of a test’s performance. We describe 
how to calculate sensitivity, specifi city, and positive and negative predic-
tive values, and show the relevance of pre- and post-test odds and like-
lihood ratio in evaluating a test in a clinical situation. We also describe 
the receiver operating characteristic curve and show how this links with 
logistic regression analysis. All methods are illustrated with examples.
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Sensitivity and specifi city
Introduction
A diagnostic test or procedure is used in clinical practice to determine 
whether a patient is likely to have a particular disease or condition. A diag-
nostic test is used in preference to a defi nitive ‘gold standard’ test when 
the defi nitive test is invasive, and/or expensive, and/or time-consuming, 
and so impractical for use in routine clinical practice.

A diagnostic test may be used to classify individuals into one of two 
categories such as:

Diseased or non-diseased• , e.g. HIV test
Positive or negative•  physiological state, e.g. pregnancy test
High or low risk• , e.g. cervical smear screening
Exposed or unexposed• , e.g. paracetamol and salicylate levels in 
suspected overdose
Diagnostic tests do not always give the ‘correct’ answer and so it is 

important to be able to quantify how accurate a particular test is. There 
is no single statistical measure that can summarize accuracy, since a test 
result may either fail to detect a case (false negative) or falsely identify a 
case (false positive). Four measures are commonly used to summarize a 
test’s performance:

Sensitivity• 
Specifi city• 
Positive predictive value• 
Negative predictive value• 

Gold standard
Sometimes it is not possible to determine the true diagnosis without inva-
sive procedures which would be harmful to the patient and so the gold 
standard is the best diagnosis possible. For example Alzheimer’s dementia 
can only be accurately confi rmed at post mortem.

Sensitivity and specifi city are characteristics of the test• 
Sensitivity•  is the proportion of those who have the disease who are 
correctly identifi ed by the test as positive
Specifi city•  is the proportion of those who do not have the disease 
who are correctly identifi ed by the test as negative 

Hence sensitivity measures how good the test is at correctly identifying 
‘diseased’ individuals and specifi city measures how good the test is at 
correctly identifying ‘non-diseased’ individuals.

Ideally tests should have both sensitivity and specifi city close to 1.0 (or 
100% if they are presented as percentages), although it is often diffi cult in 
reality to have both high sensitivity and specifi city. The consequences of a 
false positive or false negative depends on the setting. For example:

A false negative test for a sexually transmitted disease could falsely • 
reassure and lead to further transmission
In a pregnant woman, a false positive test for Down’s syndrome may • 
result in an unnecessary abortion
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A false positive smear test for cervical cancer would be overturned • 
on further testing, although the anxiety associated with a positive test 
result that turns out to be false is also an important consideration in 
evaluating a test’s performance. Conversely, a false negative smear test 
may lead to delayed diagnosis of cancer, causing a worse prognosis.

Example

Table 9.1 Commonly used diagnostic tests with sensitivity and 
specifi city

Test Sensitivity Specifi city

(a) Conventional cervical smear1 72% 94%

(b) Faecal occult blood test for colorectal cancer 
or adenomatous polyps2

43% 92%

(c) Previous history of cancer to indicate cancer 
in patients with low back pain3

31% 98%

(d) Unrelieved symptoms following bed rest to 
indicate cancer in patients with low back pain3

90% 46%

(e) Quadruple test in pregnancy for Down’s 
syndrome4

81% 93%

The examples in Table 9.1 illustrate the range of values for sensitivity • 
and specifi city commonly seen in diagnostic tests (assuming that a 
value of 80% or more for sensitivity or specifi city is ‘good’)
Some tests are ‘good’ at correctly identifying those with the disease (d, e)• 
Some are ‘good’ at correctly identifying those without disease (a, b, c, e)• 
Only one test is ‘good’ at both (e)• 

References
1 Coste J, Cochand-Priollet B, de CP, Le GC, Cartier I, Molinie V et al. Cross sectional study 

of conventional cervical smear, monolayer cytology, and human papillomavirus DNA testing 
for cervical cancer screening. BMJ 2003; 326(7392):733.

2 Tibble J, Sigthorsson G, Foster R, Sherwood R, Fagerhol M, Bjarnason I. Faecal calprotectin 
and faecal occult blood tests in the diagnosis of colorectal carcinoma and adenoma. Gut 2001; 
49(3):402–8.

3 Deyo RA, Rainville J, Kent DL. What can the history and physical examination tell us about low 
back pain? JAMA 1992; 268(6):760–5.

4 Wald NJ, Huttly WJ, Hackshaw AK. Antenatal screening for Down’s syndrome with the 
quadruple test. Lancet 2003; 361(9360):835–6.



342 CHAPTER 9 Diagnostic studies

Calculations for sensitivity and 
specifi city
Notation for calculations in a diagnostic test
Assuming that the diagnostic test can either be positive or negative, indi-
cating the presence or absence of disease, the different test results can be 
represented as follows.

Disease status (gold standard)

Positive Negative Total

Test Positive a b a+b

Negative c d c+d

Total a+c b+d n

Sensitivity = a/(a+c)
(proportion of true positives who are test positive)
Specifi city = d/(b+d)
(proportion of true negatives who are test negative)

Positive and negative predictive values
Sensitivity and specifi city are characteristics of the test but they do not 
help a clinician to interpret the results of an individual test. Positive and 
negative predictive values are useful in a clinical setting as they give the 
probabilities that an individual is truly positive given that they tested posi-
tive, or truly negative given that they tested negative. More precisely they 
are defi ned as follows.

Positive predictive value (PPV) = a/(a+b)
(proportion of test positives who are true positive)
Negative predictive value (NPV) = d/(c+d)
(proportion of test negatives who are true negative)

Note that the prevalence of disease is given by:
Prevalence of disease = (a+c)/n
(proportion of all individuals who have the disease, i.e. are positive)

Example
To illustrate the calculations we use data from a paediatric study in which 
clinicians derived a score from a chest x-ray (CXR) in preterm babies to 
predict frequent wheeze in the infants at 6 months of age.1
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Frequent wheeze at 6 months

Yes No Total

Chest x-ray  3+ 30 106 136
score <3   7  42  49

Total 37 148 185

Sensitivity            
= 

Score 3 + and frequent wheeze
   = 30/37 = 81%

                                 Total with frequent wheeze

Specifi city          
= 

Score <3 and no frequent wheeze
  = 42/148 = 28%                                       Total without frequent wheeze

Positive predictive 
= 

Score 3 + and frequent wheeze
  = 30/136 = 22%value (PPV)                      Total with score 3 +

Negative predictive 
= 

Score <3 and no frequent wheeze
 = 42/49 = 86%

value (NPV)                      Total with score <3

Prevalence         
= 

Total with frequent wheeze
    = 37/185 = 20%                                        Total patients

The relatively high NPV of 86% means that the majority of those • 
who have a CXR score of <3 (test negative) will not have frequent 
wheeze at 6 months of age (disease negative)
The relatively low PPV of 22% means that even with a CXR score of • 
≥3 (test positive), there is a fairly low probability of having frequent 
wheeze at 6 months (disease positive)
NPV and PPV depend on the prevalence of the disease in question • 
(see b Effect of prevalence, p. 344)

Reference
1 Thomas M, Greenough A, Johnson A, Limb E, Marlow N, Peacock JL et al. Frequent wheeze at 

follow up of very preterm infants: which factors are predictive? Arch Dis Child Fetal Neonatal 
Ed 2003; 88(4):F329–32.
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Effect of prevalence
Performance of a diagnostic test and PPV, NPV
PPV and NPV depend on the prevalence of the disease in the popu-
lation being tested. If the sensitivity and specifi city for a test are known 
but we wish to use the test on a different population from the one it was 
developed in, the PPV and NPV can be calculated using standard formulae 
based on Bayes’ theorem (b Bayes’ theorem, p. 234).

PPV
 
= 

       sensitivity x prevalence
        [sensitivity x prevalence] + [(1–specifi city) x (1–prevalence)]

NPV 
= 

      specifi city x (1–prevalence)
         [(1–sensitivity) x prevalence] + [specifi city x (1–prevalence)]

Note that the prevalence of disease can also be interpreted as 
the probability of disease before the test is carried out, the prior 
probability of disease. PPV gives a revised estimate of disease given the 
extra information provided by the test and is known as the posterior 
probability.

Examples
The effect of prevalence on PPV and NPV can be substantial as the three 
scenarios below demonstrate.

1. Low prevalence: 100/1100 (9%), high sensitivity, and 
high specifi city

Disease status

+ – Total

+ 95 50 145

Test result – 5 950 955

Total 100 1000 1100

Sensitivity  = 95/100  = 95% PPV  = 95/145  = 66%
Specifi city = 950/1000 = 95% NPV = 950/955 = 99%

Low prevalence and high specifi city • l NPV is high
Test negatives are likely to be true negatives but a proportion of • 
those who test positive will actually be negative (34%)
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2. Moderate prevalence: 550/1100 (50%), high sensitivity, 
and high specifi city

Disease status

+ – Total

+ 523 27 550

Test result – 27 523 550

Total 550 550 1100

Sensitivity  = 523/550 = 95% PPV  = 523/550 = 95%
Specifi city = 523/550 = 95% NPV = 523/550 = 95%

Prevalence = 50%, high sensitivity, high specifi city • l PPV and NPV 
both high
Test results are likely to be right, both positive and negative• 

3. High prevalence: 1000/1100 (91%), high sensitivity, and 
high specifi city

Disease status

+ – Total

+ 950 5 955

Test result – 50 95 145

Total 1000 100 1100

Sensitivity  = 950/1000 = 95% PPV  = 950/955 = 99%
Specifi city = 95/100  = 95% NPV = 95/145  = 66%

High prevalence, high specifi city • l PPV high
Test positives are likely to be true positives, but a proportion of • 
those who test negative will actually be positive (34%)
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Likelihood ratio, pre-test odds, 
post-test odds
Likelihood ratio
The likelihood ratio (LR) gives another measure of the performance of a 
test and is defi ned as follows.

LR = sensitivity/(1–specifi city)

Therefore, for a particular test, the LR compares the probability of a 
positive test result in an individual with the disease of interest with the 
probability of a positive test result if they were healthy. An LR greater 
than 1.0 indicates that the test is more likely to give a positive result if the 
individual had the disease than if they did not, and the greater the value of 
the LR, the more discriminating is the test.1

The LR can be combined with the odds of having the condition, to 
quantify the information given by the test that an individual with a positive 
test result actually has the disease.

The odds of having the disease is defi ned as follows.

Odds = prevalence/(1–prevalence) (= pre-test odds)

This is often referred to as the pre-test odds because it relates to the 
underlying prevalence in all individuals in the population of interest.

Following a positive test result, the post-test odds is given as follows.

Post-test odds = pre-test odds x LR

The post-test odds is another way of quantifying the information that 
a positive test result provides about whether an individual truly has the 
disease. Table 9.2 shows data from a cohort study of just under 800 000 
patients, which investigated alarm symptoms in early diagnosis of cancer 
in primary care. Since general practitioners see relatively few new cases 
of cancer in the primary care setting, this study compared four common 
symptoms in relation to a subsequent diagnosis of cancer.
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Example

Table 9.2 Observed related diagnoses of cancer in the fi rst 6 months 
after fi rst alarm symptom. Positive predicted value (PPV) and 
likelihood ratio for cancer after symptom2

PPV (%) Likelihood ratio

Haematuria:

Men 5.5 111

Women 2.5 215

Haemoptysis:

Men 5.8 117

Women 3.3 153

Dysphagia:

Men 5.3 348

Women 2.1 266

Rectal bleeding:

Men 1.8 75

Women 1.5 78

The likelihood ratios (LRs) are all high• , showing that the presence 
of the symptom makes it much more likely that the patient has 
cancer than if they did not have the symptom
For example, the LRs for dysphagia (348 in men, 266 in women) 
mean that those with the symptom are approximately 300 times as 
likely to have cancer as patients without the symptom.
However, the PPVs are very low•  showing that most patients with 
these symptoms will not have cancer:
For example, for dysphagia, only 5% of men and 2% of women with 
this symptom actually have cancer.
Note that both PPVs and LRs vary by symptom• 

References
1 Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. BMJ 2004; 329(7458):168–9.
2 Jones R, Latinovic R, Charlton J, Gulliford MC. Alarm symptoms in early diagnosis of cancer 

in primary care: cohort study using General Practice Research Database. BMJ 2007; 
334(7602):1040.
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Receiver operating characteristic 
(ROC) curves
Introduction
The discussions about sensitivity and specifi city so far have assumed 
that the diagnostic test gives one of two results, positive or negative. In 
practice, a clinical assessment may have a range of possible values such 
as a score or a measurement. The Normal or reference range can be 
used to determine the cut-off for abnormality, for example troponin I 
for diagnosing myocardial infarction (cut-off 0.6 ng/mL: sensitivity=94%, 
specifi city=81%; cut-off 2.0ng/mL: sensitivity=85%, specifi city=91%1).

As an alternative we can use a graphical method, the receiver 
operating characteristic (ROC) curve to compare the sensitivity and 
specifi city for all possible cut-offs. This allows the most appropriate cut-off 
to be chosen for the particular context.

Description
ROC curves usually plot 1–specifi city (x-axis) against sensitivity (y-axis). • 
A horizontal line is shown at 45° and the ‘curve’ joins the points 
(Fig. 9.1). Each point indicates a different cut-off and therefore gives a 
different combination of sensitivity and specifi city
Sensitivity and specifi city are inversely related – if we change the • 
cut-off for sensitivity, to improve the performance of the test, this will 
automatically reduce the specifi city
If the diagnostic test performs well then the curve will be distinctly above • 
the 45° line. If the curve rises steeply and is close to the y-axis and then 
fl attens out, the ‘best’ possible cut-off will give high sensitivity and specifi city
The area under the curve is sometimes used as a summary measure of • 
how well a variable or set of variables predict a binary outcome
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Area under ROC curve = 0.6475

To illustrate the use of ROC curves to determine the best cut-off, 
we use the data from the paediatric study shown earlier in this chapter 
(b Calculations for sensitivity and specifi city, p. 343).2 The chest x-ray 

Fig. 9.1 Example of a receiver operating characteristic (ROC) curve.
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score was discrete and ranged from 0 to 8. The ROC curve in Figure 9.1 
shows that the curve is well above the 45° line but is not steep.

Table 9.3 Sensitivity and specifi city for each possible cut-off of chest 
x-ray score

Cut-off Sensitivity Specifi city

≥0 100% 0%

≥1 97% 4%

≥2 97% 13%

≥3 81% 28%

≥4 68% 52%

≥5 57% 70%

≥6 30% 86%

≥7 14% 97%

8 3% 100%

No cut-off gives both high sensitivity and high specifi city• 
In this particular clinical setting it was desirable to have a low rate of • 
false negatives (high sensitivity) since infants who were likely to have 
later respiratory disease would benefi t from extra treatment in infancy
The cut-off chosen was • ≥3 giving sensitivity 81%, and specifi city 28%
The area under the curve was 0.65 (maximum = 1.0). Thus the • 
predictive power of this test in general is moderately high
The • accuracy of the test (proportion of all individuals who were 
correctly identifi ed by the test) is (30+42)/185 = 39%

Extensions to two cut-offs
A diagnostic test can have two cut-offs: one to rule out disease with high 
probability and another to rule in disease with high probability. Values in-
between are inconclusive. This principle is often applied informally in clin-
ical practice. For example, a blood pressure reading of 120/80 mmHg would 
generally rule out hypertension, with a reading of 160/100 usually demon-
strating disease. A reading in the middle may be deemed inconclusive, with 
the resulting decision being to repeat at a later date. For some published 
examples see the work on diagnosing non-alcoholic fatty liver disease.3–5

References
1 Ross G, Bever FN, Uddin Z, Hockman EM. Troponin I sensitivity and specifi city for the diagno-

sis of acute myocardial infarction. J Am Osteopath Assoc 2000; 100(1):29–32.
2 Thomas M, Greenough A, Johnson A, Limb E, Marlow N, Peacock JL et al. Frequent wheeze at 

follow up of very preterm infants: which factors are predictive? Arch Dis Child Fetal Neonatal Ed 
2003; 88(4):F329–32.

3 Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S et al. Noninvasive markers 
of fi brosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and 
exploring simple markers. Hepatology 2008; 47(2):455–60.

4 Guha IN, Parkes J, Roderick PR, Harris S, Rosenberg WM. Non-invasive markers associated 
with liver fi brosis in non-alcoholic fatty liver disease. Gut 2006; 55(11):1650–60.

5 Parkes J, Guha IN, Roderick P, Rosenberg W. Performance of serum marker panels for liver 
fi brosis in chronic hepatitis C. J Hepatol 2006; 44(3):462–74.
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Links to other statistics
1. Link to logistic regression
Logistic regression can be used to calculate the area under the curve for 
a particular combination of ‘gold standard’ variable and ‘test’ variable. This 
can be useful if there are several possible variables which could be used to 
derive a test, for example there might be several possible scores that may 
be useful in predicting frequent wheeze. To determine which of these is 
best we can compare the area under the curves, and the variable with the 
highest area is the best predictor of the disease of interest. Alternatively, 
it may be possible to combine the different scores to produce an even 
better measure.

2. Confi dence intervals and signifi cance tests
Sensitivity, specifi city, PPV, and NPV are all proportions and confi dence • 
intervals (CI) are useful to indicate precision
CIs are calculated in the same way as for other proportions (• b 95% 
confi dence intervals for a proportion, p. 244)1

Sometimes these proportions, particularly sensitivity, come from a • 
small sample and so CIs may be wide
For example, in the paediatric data given previously (• b Calculations 
for sensitivity and specifi city, p. 342): sensitivity = 30/37 = 81%, 95% CI: 
65% to 92%
Sensitivity, specifi city, etc. can be compared but care needs to be taken:• 
(i) When two diagnostic tests have been developed using the same 
dataset then paired tests need to be used, see Hawass for worked 
details2

(ii) When two diagnostic tests have been developed using different 
datasets then unpaired tests should be used, such as the chi-squared 
test (b Chi-squared test, p. 262)
A signifi cance test is available to compare two or more ROC curves. • 
This can be useful when exploring the ability of different factors 
to predict an outcome as described in point 1 above (b Logistic 
regression, p. 420)
Likelihood ratios are ratios of proportions, and so CIs can be calculated 

and signifi cance tests performed in the same way as for relative risks 
(b Confi dence interval for tests of proportions, p. 270)
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3. Effect of prevalence on sensitivity and specifi city
Sensitivity and specifi city are not affected by the prevalence of disease • 
if the true diagnosis (gold standard) is always correct
In practice there may be an error in the true diagnosis and in such • 
cases the sensitivity and specifi city are measuring the ability of the test 
to predict the diagnosis rather than the true disease state
Hence, if it is known that errors are possible in the true diagnosis, • 
then it is safer to evaluate a diagnostic test in a sample with a similar 
prevalence to that in which it is planned to use the test in future3

References
1 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals 

and statistical guidelines. London: BMJ Publishing Group, 2000.
2 Hawass NE. Comparing the sensitivities and specifi cities of two diagnostic procedures 

performed on the same group of patients. Br J Radiol 1997; 70(832):360–6.
3 Begg CB. Biases in the assessment of diagnostic tests. Stat Med 1987; 6(4):411–23.
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Other statistical methods

Introduction
In this chapter we describe several individual statistical methods that 
do not fi t neatly in the other chapters but which are commonly used 
in medical research. These include methods used to assess agreement 
in measurement and reliability studies, the number needed to treat as a 
measure of effi cacy in a trial, and life tables. All methods are illustrated 
with examples. 
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Kappa for inter-rater agreement
Introduction
Kappa is a statistic that measures the agreement between two raters 
where responses can fall into any of a number of categories. For example 
Table 10.1 shows data from ultrasound scans in preterm babies to deter-
mine how well different doctors agree with the grading of the scans. Each 
baby’s scan can be classifi ed as normal or abnormal using a published 
grading system. 

Table 10.1 Grading of ultrasound scans into normal or abnormal by 
two doctors: the hospital doctor and an independent doctor

Independent Doctor

Hospital Doctor Normal Abnormal Total

Normal 490 45 535

Abnormal 18 57 75

Total 508 102 610

0 Percentage agreement is misleading
One approach commonly used with data such as these is to calculate the 
percentage agreement. Here this is (490+57)/610=0.897 or approximately 
90%. This looks impressive but is misleading because it ignores agreement 
that could have occurred by chance. 

To illustrate this suppose we had the only the hospital doctor grading 
and that we tossed a coin to get the second opinion. We assume that a 
head is ‘Normal’ and a tail is ‘Abnormal’. We used a computer program to 
simulate the coin tossing and obtained the data shown in Table 10.2.

Table 10.2 Grading of ultrasound scans by hospital doctor with 
the second opinion obtained by tossing a coin (head=‘normal’, 
tail=‘abnormal’)

Second opinion (toss coin)

Hospital Doctor Normal Abnormal Total

Normal 274 261 535

Abnormal 34 41 75

Total 308 302 610

Here the percentage agreement is (274+41)/610=0.516 or approximately 
52%. This is clearly less impressive than the real data but shows that simply 
by chance alone we can get a value of over 50%.  If the second opinion 
always chooses ‘normal’ then we get Table 10.3, which has a percentage 
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agreement of (535+0)/610=0.877 or approximately 88%, which is close to 
the value of 90% obtained with the actual data.

Table 10.3 Grading of ultrasound scans by hospital doctor with the 
second opinion obtained always grading scans as ‘normal’

Second opinion (grade all scans ‘normal’)

Hospital Doctor Normal Abnormal Total

Normal 535 0 535

Abnormal 75 0 75

Total 610 0 610

Kappa
We therefore need a method that will measure agreement over and 
beyond agreement that happens by chance alone. Kappa does this. It 
works by adjusting the observed proportion agreeing for the agreement 
that would happen by chance.

Calculating kappa
1. Calculate the proportion of categories where there is 

agreement, Pa
2. Calculate the proportion agreeing by chance, Pc, as below:

Expected values are calculated as in the chi-squared test • 
(b Chi-squared test, p. 262) as row total x column total/grand 
total
Proportion agreeing by chance is sum of expected numbers • 
divided by grand total

3. Kappa = (Pa – Pc)/(1 – Pc)

Example of calculations

From Table 10.1:
1. Proportion of categories where there is agreement = 0.897
2. Proportion agreeing by chance: 

normal/normal: 535/610 x 508/610 = 0.730
abnormal/abnormal: 102/610 x 75/610 = 0.021
Proportion agreeing by chance:
0.730 + 0.021 = 0.751

3. Kappa = (0.897 – 0.751)/(1 – 0.751)
          = 0.59
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Kappa (continued)
Interpreting kappa
Table 10.4 gives a qualitative interpretation of kappa devised by Landis and 
Koch.1 This has been widely adopted as a useful guide.

Table 10.4 Interpretation of kappa1

Value of kappa Strength of agreement

<0.00 Poor (worse than chance)

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Good

0.81–1.00 Very good

Note that kappa can be negative, and although this is unlikely in 
practice, negative values imply that agreement is worse than that 
expected by chance. For the example (Table 10.1), the kappa value, 0.59 
can be described as representing moderate agreement between the two 
doctors.

Confi dence interval for kappa
A confi dence interval (CI) can be calculated for kappa provided the 
sample is large enough. In practice this works as long as n x Pc and 
n x (1 – Pc) are both greater than 5, where n is the overall total. 

Calculation of CI for kappa

1. Standard error of kappa (SE) is given by:

2

Pa(1 Pa)
SE

n(1 Pc )
−

=

Where n is the overall total and Pc and Pa are as before.

2. 95% CI: 
Kappa ± 1.96 x SE
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Example of calculation of 95% CI

From previous section (b Calculation of CI for kappa, p. 355):
Pa=0.897
Pc=0.751
n=610
Kappa= 0.586

2 2

Pa(1 Pa) 0.897(1 0.897 )
SE

n(1 Pc ) 610(1 0.751)

0.049

− −Pa) 0 897(1
= =

−Pc ) 610(1

=

95% CI:
0.586 ± 1.96 x 0.049 
0.49 to 0.68

Signifi cance test
A signifi cance test for kappa can be calculated to test the null hypothesis 
that the population value of kappa is zero. The calculation of this involves 
a slightly modifi ed standard error and is shown below.

Calculation of signifi cance test for kappa

For the signifi cance test use the following test statistic:

Kappa 0.586

Pc 0.751
n(1 Pc ) 610(1 0.751)

8.33,P 0.001

=

−Pc ) 610(1

= <8.33,P

So we have good evidence for real agreement but it is only moderately 
strong.

Reference
1 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 

1977; 33(1):159–74.
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Extensions to kappa
More than two categories
Table 10.5 shows data from a study to validate a new fi ve-level triage 
instrument. The instrument was trialled in 351 patients by both a nurse 
and a doctor.1 The kappa calculation can be extended to more than two 
categories (details omitted), and gives kappa=0.70. 

Table 10.5 The agreement in triage ratings patients by a nurse and a 
doctor in 351 using the Emergency severity index (ESI).1 The shaded 
cells indicate agreement

Doctor triage

Nurse triage

ESI-1 ESI-2 ESI-3 ESI-4 ESI-5 Total

ESI-1 4 0 0 0 0 4

ESI-2 2 84 12 1 0 99

ESI-3 0 13 81 12 1 107

ESI-4 0 0 5 66 22 93

ESI-5 0 0 1 10 37 48

Total 6 97 99 89 60 351

Weighted kappa
The calculation of kappa for Table 10.5 has not taken into account the 
ordering in the categories. This may be important if the extent of the dis-
agreement has a useful meaning. With these data, a disagreement by one 
category may be less serious than a disagreement by two categories or 
more. 

A weighted version of kappa can be calculated which takes account of 
how far apart any disagreements are. In the example above, for the ESI-2 
row, 84 were also graded as ESI-2 by the nurse but 2 were graded ESI-1, 
12 were graded ESI-3, and 1 was graded ESI-4 by the nurse. Weighted 
kappa takes into account the degree of disagreement. 

An obvious choice for weights would be 0 for agree, 1 for a disagreement 
by one category, 2 for a disagreement of two categories, etc. Using this 
weighting system, weighted kappa is 0.80 (details of calculations omitted). 
This indicates a greater level of agreement than the unweighted kappa 
value. 

A 95% confi dence interval can also be calculated for the weighted kappa 
and is 0.76 to 0.84 here. 

Choice of weights matters
The weights used above are known as linear weights. Other weighting 
systems can be used such as quadratic weights where the weights are 
the squares of the linear weights, i.e. they are 0, 1, 4, 9, 16. This gives a 
different kappa, 0.89.
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0 Since the choice of weights affects kappa, it is clearly important to 
choose the weights in advance on theoretical grounds and not to try 
different weights and use the set which give the biggest kappa value.

More than two observers
Kappa can be extended still further to allow for multiple observers. For 
example in a study of interobserver agreement for the assessment of 
handicap in stroke patients, 10 senior neurologists and 24 junior doctors 
interviewed 100 patients in different combinations of pairs.2  The degree 
of handicap was recorded by each observer on the modifi ed Rankin scale, 
which measures the degree of disability in stroke patients on a six-point 
scale. The authors reported a weighted kappa of 0.91, using quadratic 
weights (details omitted). A further extension is where multiple observers 
rate each subject (see Streiner and Norman3). 

Calculations 
These extensions to kappa are not easily calculated by hand and require 
specialized statistical software, such as Stata,4 which will calculate all 
methods discussed here. 

Cautions in using kappa
Using kappa is not trouble-free and potential problems in using and inter-
preting kappa include:

Kappa depends on the true proportions of subjects in each category. • 
It is greatest when the proportion is 0.5. Hence unless there is perfect 
agreement, when one category is much smaller than the other(s), 
kappa will be small irrespective of the degree of agreement
The calculation of kappa assumes that the sample is representative of • 
the underlying population. If for example the sample is stratifi ed to 
have a larger number in a rare category, then the sample kappa will be 
artifi cially infl ated and will not refl ect the true agreement

Further information on kappa
See the following books and papers:

Theory:  Cohen,• 5,6 Fleiss7

Practical description: Altman• 8 (Chapter 14), Streiner and Norman3 
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Bland–Altman method to measure 
agreement
Comparing methods of measurements
It is common in medicine to compare two different methods of measuring 
the same quantity. For example the data in Table 10.6 show airway resist-
ance, a measure of lung function, measured in infants using an invasive 
method (Raw) and using a non-invasive method (Rint).1

Table 10.6 Airway resistance measured in two ways – Raw and Rint 
in 26 infants

Raw Rint Raw Rint Raw Rint

2.35 3 2.64 1.8 4.12 3.5

2.08 2.1 2.44 2.5 3.31 2.1

6.92 5 3.83 2.4 3.59 2.3

6.87 3.4 2.24 3.3 3.55 2.6

3.76 3 2.54 1.8 4.4 3.1

3 1.7 2.13 2.2 2.53 3

4.66 4 2.92 3.6 1.65 2.7

3.62 2.1 3.07 3.8 3.22 2.2

4.55 3.6 3.68 3.1

0 Correlation is inappropriate 
It is common but inappropriate to analyse data such as these by plotting 
them and calculating a correlation coeffi cient as in Figure 10.1.
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Fig. 10.1 Scatter plot of Raw and Rint in 26 infants.
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Figure 10.1 shows  the Raw and Rint values with the line of equality. The 
correlation coeffi cient of 0.60 is statistically signifi cant showing that there 
is good evidence of a real linear relationship between Raw and Rint. 
However the statistically signifi cant correlation does not indicate that the 
methods agree, as Bland explains.2

Correlation • r measures how strongly two variables are related to each 
other, not how well they agree. There would be perfect correlation 
and agreement if all the points were on the line of equality. However, 
there would be perfect correlation if the points were on any non-
horizontal straight line but this would not indicate perfect agreement. 
If the scale of measurement was changed, for example by multiplying all • 
Raw values by two, the correlation r would be exactly the same, 0.60, 
but there would be poor agreement between the values. 
Correlation is affected by the range of data used – a greater range gives • 
a stronger correlation. Agreement on the other hand is not affected by 
the range.

Bland–Altman limits of agreement
The Bland–Altman method provides a measure of agreement by esti-
mating how far apart the two values are on average and putting an interval 
around this. This is achieved by calculating the following:

Mean difference between the methods• 
Standard deviation of differences (SD) • 
Range: • mean ± 2 SD gives limits of agreement

Example of calculations

Mean difference between Rint and Raw: 0.6065• 
Standard deviation of differences: 1.03406• 
Limits of agreement:  0.6065 • ± 2 x 1.03406
Limits of agreement are: –1.46 to 2.67
This means that for 95% of observations, the difference between Rint • 
and Raw will lie between –1.46 and 2.67

References
1 Thomas MR, Rafferty GF, Blowes R, Peacock JL, Marlow N, Calvert S et al. Plethysmograph 

and interrupter resistance measurements in prematurely born young children. Arch Dis Child 
Fetal Neonatal Ed 2006; 91(3):F193–6.

2 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of 
clinical measurement. Lancet 1986; i(8476):307–10.
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Bland–Altman method (continued)
Interpretation of limits of agreement 

Limits of agreement indicate how closely the two methods • 
agree
What is regarded as • ‘close’ is a clinical decision not a statistical 
one
If methods•  agree closely they can be used interchangeably
If methods•  do not agree closely they should not be used 
interchangeably
Check • if agreement is uniform along the range of values 
measured. If not, the limits do not apply and a modifi ed method is 
needed (see opposite ‘extensions to Bland–Altman’)

Bland–Altman plot
This is a graph that plots the mean of the two measurements against the 
difference to provide a visual impression of the extent of agreement. 
Figure 10.2 shows the plot for the Raw and Rint data. It clearly shows 
that Rint values tend to be higher than Raw and this does not appear to 
be affected by the size of the lung function measurement, except at the 
upper end where two high values show very poor agreement.
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For these data, the researchers concluded that there was poor agreement 
between Rint and Raw. This meant that Rint measurements which do not 
require the infant to be sedated cannot be used as a substitute for Raw 
measurements which do.1 

Fig. 10.2 Bland–Altman plot for Raw and Rint data1.
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Extensions to Bland–Altman method
95% confi dence intervals: • these are rarely seen but can be calculated 
using formulae given in Bland2 and are shown below 
(details omitted)
Mean difference = 0.61 (95% CI: 0.19 to 1.02)
Lower limit of agreement = –1.46 (95% CI: –2.18 to –0.74)
Upper limit of agreement = 2.67 (95% CI: 1.95 to 3.39)
Relationship between difference and mean• : if the difference 
increases with the mean, try a logarithmic transformation. See Bland2 
for worked example
Testing repeatability• : can be done using similar methods, see Bland2

Measuring agreement with repeated measurements• : see Bland2

Multiple observations per individual:•  see Bland3 

Intraclass correlation coeffi cient
Whereas the correlation coeffi cient is not appropriate to measure agree-
ment, the intraclass correlation coeffi cient (ICC) may be used. It measures 
the extent to which there is perfect agreement, i.e. the extent to which 
the points vary around a line of perfect unity. It is a dimensionless quan-
tity and so can be useful when looking at agreement in several factors 
separately, i.e. to see which factors agree most closely. Unlike the limits of 
agreement described above, the ICC does not estimate  how closely the 
two methods agree in absolute terms. 

Further reading
Bland and Altman have published a number of papers on their • 
method2–11

Martin Bland’s website provides regular updates on this work and has • 
helpful FAQs M www-users.york.ac.uk/~mb55/
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Chi-squared goodness of fi t test 
Details of the test
It is used to test the null hypothesis that a frequency distribution follows a 
particular theoretical distribution, for example a uniform distribution, the 
Poisson distribution or Normal distribution.

How it works
It works by calculating expected values (• E) for the data and comparing 
them with the observed values (O) using a chi-squared test
Expected numbers are calculated by multiplying the frequency in a • 
category by the probability that an individual falls in that category
The format of the test is the same as for contingency tables, i.e.:• 

 

2

all cells

(O E)
E
−∑

The degrees of freedom are given by: • 
(no. of groups – 1) –  (no. of parameters estimated from the data)
If a Normal distribution is fi tted to some data then two parameters are • 
estimated from the data – the mean and the standard deviation. For 
the Poisson distribution there is one parameter – the mean. In some 
situations as in the following example, no parameters were estimated.
0•  Do not use the chi-squared goodness of fi t test if more than a small 
proportion of expected frequencies are less than 5 or if any are less 
than 1

Example

The cause of sudden unexpected death in epilepsy (SUDEP) is by defi -
nition unknown and there have been many studies investigating pos-
sible risk factors.  It was recently suggested that winter temperatures 
might be a risk factor but no data were presented, and so Bell and col-
leagues sought to explore this hypothesis using data from the UK. They 
cross-classifi ed deaths by month, season, and temperature to see if the 
number of deaths varied by any of the seasonal factors.1 Numbers by 
month are given in Table 10.7. 
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Hypothesis
If there were no differences in the incidence of SUDEP by month, 
then the distribution of deaths would be even across all months and 
the numbers expected could be calculated by equally dividing the total 
deaths across the months. If cold temperatures did lead to more deaths 
in winter then the observed deaths would not be evenly distributed. To 
test this, a chi-squared goodness of fi t test can be used to compare the 
observed number of deaths with the expected number. 

Table 10.7 Distribution of SUDEP by month of death

Sep 99 Oct 99 Nov 99 Dec 99 Jan 00 Feb 00 Total

35 34 41 43 44 30

Mar 00 Apr 00 May 00 Jun 00 Jul 00 Aug 00

27 36 33 30 32 24 409

The calculations
The expected values are calculated as:• 
total x no. of days in month/366
For example for January:•  expected no.= 409 x 31/366
All expected numbers are shown below• 

Table 10.8 Expected values for the monthly data

Sep 99 Oct 99 Nov 99 Dec 99 Jan 00 Feb 00 Total

33.52 34.64 33.52 34.64 34.64 32.41

Mar 00 Apr 00 May 00 Jun 00 Jul 00 Aug 00

34.64 33.52 34.64 33.52 34.64 34.64 409.00

2

all cells

2 2 2

(O E)
E

(35 33.52) (2 34 34.64) (2 24 34.64)
...

33.52 34.64 34.64
12.25

−

− −33 52) (34 −
= +

( )
+ +...

=

∑

The degrees of freedom are:  no. months – 1 = 11; P=0.35
So there is no evidence that the number of deaths varies by 
month.
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Number needed to treat 
Introduction
The number need to treat (NNT) is a useful way to summarize the clinical 
effectiveness of a treatment that has been assessed using a binary (yes/
no) outcome. NNT is widely used in the reporting of clinical trials and is 
calculated as the reciprocal of the absolute risk reduction. 

Formula

Assume that two treatments A and B are being compared and A is  • 
more effective than B 
P• A is the proportion experiencing the negative outcome in group A,  
PB is the proportion experiencing the negative outcome in group B

l Absolute difference is PB – PA
l Number needed to treat is 1/(PB – PA)

Interpretation of NNT
Number of patients who need to be treated in order that one • 
additional patient has a positive outcome 
A lower number indicates a more effective treatment• 
When there is no difference in outcome between the treatment and • 
control groups, i.e. difference=0, the NNT is 1/0 which is infi nity (∞)

Example

A randomized controlled trial in pregnant women with gestational dia-
betes investigated whether a package of care including insulin therapy 
reduced the risk of perinatal complications.1 The main outcome was 
‘any serious perinatal complications’ (yes/no) and the following results 
were reported:

Proportion with complications in the treated group: 7/506 = 0.014• 
Proportion with complications in the control group: 23/524 =0.044• 
Difference in proportions:  0.044 – 0.014 = 0.03 (95% CI: 0.010 to • 
0.052)

To calculate the NNT, invert the difference and its 95% CI:
1/0.03 = 33;  1/0.052 to 1/0.010 = 19 to 100
l NNT is 33 (95% CI: 19 to 100)
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Non-signifi cant results
The gestational diabetes trial obtained a statistically signifi cant difference, 
as shown by a 95% confi dence interval for the difference which excluded 
the null value 0. When the difference is not statistically signifi cant, the con-
fi dence interval for the difference includes 0. This causes some diffi culty 
in constructing and interpreting a confi dence interval for NNT because 
the inverse of 0 cannot be calculated and so the confi dence interval is dis-
continuous. In addition, one of the 95% confi dence limits will be negative 
when a number needed to treat cannot be negative.  In this case it indi-
cates a harmful effect. The harmful effect number is called the number 
needed to harm (NNH).

Example

In the randomized controlled trial in pregnant women with gestational 
diabetes, the authors reported caesarean section rates in the treated 
and control groups1:

Proportion with caesarean section in the treated group: 152/506=0.300
Proportion with complications in the control group: 164/524 =0.313
Difference in proportions: 0.313 – 0.300 = 0.013 (95% CI: –0.044 to 0.069)
NNT = 1/0.013 = 77

Superfi cially the 95% confi dence limits are: –1/0.044 = –14 and 
1/0.069 = 23

0 But note that:
The 95% CI for the NNT•  cannot be the simple reciprocal of this, 
–23 to 14, as this does not include the actual NNT value. It is in fact 
all values outside this range, i.e.:
–∞ to –14,  23 to +∞
As suggested by Altman,• 2 this 95% CI could be reported as:
NNT(benefi t) 23  to  NNT(harm) 14 

This shows that NNT(benefi t) is unlikely to be less than 23.

Reporting 95% CIs or not?
Some researchers do not report 95% CIs for NNTs where the difference 
is not statistically signifi cant.  However this is unhelpful since confi dence 
intervals are especially informative where a difference is not signifi cant.  
The 95% CI from a non-signifi cant randomized controlled trial indicates 
that the treatment is potentially associated with either a harmful effect 
or a benefi cial effect that is entirely consistent with the non-signifi cant 
difference.

References
1 Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of 

gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005; 352(24):2477–86.
2 Altman DG. Confi dence intervals for the number needed to treat. BMJ 1998; 317(7168):

1309–12.
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Number needed to treat (continued)
Number needed to harm (NNH or NNT(harm))
NNH and its 95% confi dence interval is reported when treatment differ-
ences are not signifi cant. In addition, NNH is also used where the treat-
ment is more harmful than the control, such as when side effects are more 
common in the intervention group than in the control group.  

Example

In the randomized controlled trial in pregnant women with gestational 
diabetes, the authors reported rates of admission to the neonatal 
nursery in the treated and control groups:1

Proportion with admission in the treated group: 357/506 = 0.706
Proportion with admission in the control group: 321/524 =0.613
Difference in proportions: 0.706 – 0.613  = 0.093 (95% CI: 0.035 to 
0.150)
NNH = 1/0.093 = 11
95% confi dence limits: 1/0.035 = 29 and 1/0.150 = 7
l NNH is 11 (95% CI: 7 to 29)

NNT in meta-analyses 
When doing a meta-analysis (b Chapter 13, p. 447) of randomized con-
trolled trials with binary outcomes it may be desirable to present results 
as NNTs as well as either absolute differences in proportions or rate 
ratios. This can be done by inverting the pooled absolute difference 
and its 95% confi dence interval. Forest plots can be drawn using NNTs as 
for absolute differences or relative risks. Altman gives an example2 repro-
duced in Figure 10.2.

If the meta-analysis uses relative risks then the pooled estimate can be 
used to obtain the NNT if the control group event rate is specifi ed.

If PA, PB, are the rates in the treatment and control groups respectively, 
PB is known, and the relative risk is RR, then NNT is given by:

B

1
NNT

P (B RR 1)
=

−
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Example 

Fig. 10.3 Forest plot for meta-analysis of eight trials showing NNTB (number 
needed to treat for benefi t) and NNTH (number needed to treat for harm).
Reproduced from BMJ Altman DG; 317:1309–1312 1998 with permission from BMJ Publishing 
Group Ltd.
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0 Problems in pooling NNTs
If the baseline event rates vary between the randomized controlled trials 
that have been pooled then the overall NNT obtained from the pooled 
estimate may be seriously misleading.3 If baseline control rates are known 
to vary then the best approach is to calculate different NNTs according 
to the baseline rate in the target population. If the NNTs are for potential 
use in a range of populations, then it is useful to calculate a range of NNTs 
to cover the range of baseline rates that may occur. This approach was used 
in an effectiveness review of treatment for neuropathic pain (Fox-Rushby 
et al. 2010) – see extract below:

‘For 50% response to pain, the placebo rate varied between studies 
and so the number needed to treat (NNT) has been calculated from 
the pooled relative risk value 2.70 using a range of placebo responses, 
5%, 10%, 15%, and 20% to refl ect real variation in rates among different 
patient groups. This gives NNT values of 12, 6, 4, and 3 respectively.’ 

1 Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of 
gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005; 352(24):2477–86.

2 Altman DG. Confi dence intervals for the number needed to treat. BMJ 1998; 317(7168):
1309–12.

3 Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses-some-
times informative, usually misleading. BMJ 1999; 318(7197):1548–51.
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Life tables 
Mortality rates
These are calculated from the number of deaths in a given time period 
divided by the number of people at risk in the same period. They are pro-
portions although they are often presented as rates such as the number 
of deaths per 100 people or per 1000, etc. to make the usually small pro-
portions easier to read. Mortality rates vary by age and so separate rates 
in specifi c age categories are often presented – these are age-specifi c 
mortality rates. 

Life tables
Demographic life tables provide a way of displaying the mortality experi-
ence of a population. To calculate them, the age-specifi c mortality rates 
in a population are applied to a theoretical cohort of 100 000 people as 
shown in Table 10.9.

Table 10.9 Extract from English life table 16 for males and females 
combined 2000–20021

Age 
(years)

Death rate 
observed per 
10,000

Hypothetical 
number alive

Hypothetical 
number of 
deaths

Proportion of 
deaths

0 54.20 100000 542 0.00542000

1 3.720 99458 37 0.00037202

2 2.414 99421 24 0.00024140

3 1.7103 99397 17 0.00017103

4 1.3081 99380 13 0.00013081

5 1.3083 99367 13 0.00013083

etc

60 84.5294 90856 768 0.00845294

61 93.0202 90088 838 0.00930202

62 102.4090 89250 914 0.01024090

63 112.1853 88336 991 0.01121853

etc

109 5000 4 2 0.5

110 5000 2 1 0.5

111 10,000 1 1 1.0
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The calculations
The observed death rate is that seen in the population of interest, here • 
males and females in England between 2000 and 2002
The hypothetical number of deaths is found by multiplying the • 
hypothetical total by the observed death rate
The proportion of deaths is the death rate expressed as a proportion• 
The number alive at a given age is the number alive at the previous age • 
category, minus the number of deaths at the given age. For example, 
the number alive at age 1 is 100 000 – 542 = 99 458, the number of 
survivors

Expected (average) years of life
This is the average length of life after a particular age and is calculated 
from a full life table. For example to calculate the expected years of life 
from age 60, add all the numbers alive from age 60 and divide by the 
number alive at age 60. A half is usually added as people rarely die on their 
birthdays. The full life table is not given in Table 10.9 but can be found on 
the ONS website.1

Calculating expected years of life

Nx is no. surviving to age x
Expected years of life from age x is:

i
i x 1

x

n
0.5

n

∞

= +x +
∑

Expected years of life after age 60 
= (90 088+89 250+88 336+…+4+2+1)/90 856+0.5 
= 21.5
This means that on average people who reach age 60 will live for 
another 21.5 years 

Life expectancy at birth
This can be calculated in the same way but starting at age 0, and therefore 
provides a estimate of the average length of life. 

Further information
Bland, Chapter 16,2 has further details of life tables with more examples. 
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Direct standardization
Why standardize?
It is often useful to compare overall mortality rates in different popula-
tions but the comparison will be confounded by age if the two populations 
have different age structures. Standardization provides a way to adjust for 
this. There are two ways to standardize – direct standardization and 
indirect standardization.

Details of direct standardization
One population is regarded as the • standard population and the other 
as the comparison population
The age-specifi c death rates of the comparison population are applied • 
to the age structure of the standard population
The standardized mortality rate in the comparison population is • 
compared with that observed

Example taken from Bland, Chapter 161

In this example, mortality rates were compared in England and Wales 
for 1901 and 1981. The overall rates in the 2 years were: 1901: 15.7 
per 1000; and 1981: 15.6. This is not a fair comparison though because 
the age structure of England and Wales changed over the 80-year time 
period. Hence direct standardization was used.

Table 10.10 Direct standardization of mortality rates in England and 
Wales in 1901 and 1981

Age group Proportion 
in 1901 
population 

Death rate 
in 1981

Expected death rate in 1981 
assuming age structure of 1901 
column 2 x column 3

15–19 0.1536 0.8 0.1229

20–24 0.1407 0.8 0.1126

25–34 0.2376 0.9 0.2138

35–44 0.1846 1.8 0.3323

45–54 0.1334 6.1 0.8137

55–64 0.0868 17.7 1.5364

65–74 0.0457 45.6 2.0839

75–84 0.0158 105.2 1.6622

85+ 0.0017 226.2 0.3845

TOTAL 7.2623

From Bland 2000 © Reproduced with kind permission from Oxford University Press.
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Interpretation
The crude mortality rates are similar in the two populations but after 
standardization the 1981 rate, 7.26 per 1000, is much lower than the 1901 
rate, 15.7 per 1000. This illustrates that:

Comparison of crude mortality rates in populations may be misleading• 
Adjusting for age structure can reveal large differences in mortality that • 
are not seen in when comparing crude rates only

Confi dence intervals
These can be calculated using a computer package such as CIA,  available 
with Statistics with confi dence2 (details omitted). 

0 Note
The example here demonstrates clearly that comparison of crude death 
rates can be seriously misleading when the age structure of the two popu-
lations is different. The example here has shown that standardization may 
reveal large differences in death rates that were not apparent when simply 
looking at crude rates.

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confi dence: confi dence intervals and 

statistical guidelines. London: BMJ Publishing Group, 2000.
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Indirect standardization 
Details of indirect standardization

It is used when the comparison population is small and so age-specifi c • 
death rates are poorly estimated, for example when studying mortality 
due to certain conditions or when considering an occupational group
The age-specifi c death rates in the standard population are applied to • 
the age distribution in the comparison population to get the number 
of deaths expected. The expected number is compared with the 
observed number of deaths.

Example from Bland, Chapter 161 

In this example, death rates were compared for cirrhosis of the liver in 
all men and in male doctors. The crude rates were 1423/152 479 80= 93 
per million in all men and 14/435 70= 321 per million in male doctors. 
There are too few deaths among the doctors to calculate age-specifi c 
rates and yet it seems likely that the age structure of the two groups 
would differ. Therefore indirect standardization was used. 

Table 10.11 Mortality rates for cirrhosis of the liver in all men and 
male doctors standardized using the indirect method

Age group Death rate 
in standard 
population 

Numbers of doctors 
in comparison 
population

Expected number 
of deaths in doctors 
assuming standard 
population death rates 

15–24 0.000005859 1080 0.006 328

25–34 0.000013050 12 860 0.167 823

35–44 0.000046937 11 510 0.540 245

45–54 0.000161503 10 330 1.668 326

55–64 0.000271358 7790 2.113 879

TOTAL 4.4966

From Bland 2000 © reproduced with kind permission from Oxford University Press.

Standardized mortality ratio (SMR)
This is 14/4.4966 = 3.11• 
SMR usually multiplied by 100 to give 311• 
Here this is not very different to the ratio of the crude rate, • 
321/93=3.44

Interpretation
The observed number (14) is more than there times the number expected 
(4.5) and so it is clear that mortality from cirrhosis of the liver among 
doctors in the UK is much greater than in the general population after 
standardizing for age. 
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Confi dence interval for SMR
Assuming that the observed number of deaths follow a Poisson distribu-
tion and the observed number of deaths is more than 10, an approximate 
95% CI is given as shown in the box.

100 1 96 100 100 1 96 100
O O

1 96 100
O O

1 96 100. t96 100 o .    100 1
E E E E

× − 100 × ×100

For the cirrhosis data this is:

14 14 14 14
100 1 96 100 100 1

14
96 100

4 4966 4 4966 4 4966 4 4966
311 163  311 163

348 474

. t96 100 o .   100 1
. .4966 4 . .4966 4

to

to

× − 100 × ×100

= −311 +
=

Since the confi dence interval excludes the null value, 100, the SMR is 
statistically signifi cant, i.e. the excess of deaths in doctors is likely to be 
a real effect.

Further points 
SMRs are sometimes used to compare mortality in a large number • 
of populations. This is useful but care is needed in interpreting the 
individual SMRs, particularly any very extreme SMRs which may have 
occurred simply due to the multiplicity of analyses performed.
Julious and others• 2 suggest caution in using SMRs to compare several 
small geographical areas where the denominators vary and tend to be 
small. 
Other statistical methods may be used to adjust for age, such as fi tting • 
regression models. This may be a better approach if it is necessary to 
adjust for further variables in addition to age.

Further reading
Standardization is described in both statistics and in epidemiology books 
such as Bland1 (Chapter 16), Armitage3 Chapter 19), Kirkwood4 (Chapter 
25), and Gordis5 (Chapter 4).

References
1 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
2 Julious SA, Nicholl J, George S. Why do we continue to use standardized mortality ratios for 

small area comparisons? J Public Health Med 2001; 23(1):40–6.
3 Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Oxford: 

Blackwell Science, 2002.
4 Kirkwood BR, Sterne JAC. Essential medical statistics. 2nd ed. Malden, MA: Blackwell Science, 

2003.
5 Gordis L. Epidemiology. 3rd ed. Philadelphia, PA: Elsevier Saunders, 2004.
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Analysing multiple 
observations per subject

Introduction
In this chapter we describe the statistical issues involved in analysing 
studies with more than one data point or observation per subject, such 
as when a series of measurements are made on each individual over time 
or when a group of subjects are analysed together, forming a cluster. 
For each of these situations, the statistical analysis needs to take account 
of the design of the study, and for most situations there are several 
possible approaches which may be used. We describe the most common 
approaches in terms of when the methods are appropriate, how they 
work, and how the results are interpreted.
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Serial (longitudinal) data
Introduction
It is very common in medicine to make a series of measurements on a 
patient either as part of clinical care or as part of a research study. For 
example:

Blood pressure measured automatically at 30-minute intervals over a • 
24-hour period in a patient with possible hypertension
Lung function measured daily in patients with chronic obstructive • 
pulmonary disease (COPD) (Fig. 11.1)
Temperature measured every 30 seconds for 4 hours after febrile • 
subjects are given one of two possible antipyretic drugs
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Fig. 11.1a,b Example of serial data: peak fl ow rate for 30 days in two patients 
with COPD.
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Sometimes these serial measures are simply plotted and visually 
examined, as in the blood pressure example. There are many forms that 
the longitudinal relationships can take but commonly seen patterns are:

A fl at relationship•  where levels stay broadly the same, as in the fi rst 
graph in Figure 11.1
A sloping relationship•  where values either increase or decrease with 
time, such as in the second graph in Figure 11.1 where lung function is 
fl uctuating but overall is decreasing over time
A peaked relationship•  where values rise and fall, for example 
oestrogen levels over a month in menstruating women, which vary as 
a result of the monthly menstrual cycle 
Sinusoidal relationships • where values rise and fall over time in a 
regular seasonal pattern, such as outdoor temperature measured daily 
over several years

Introduction to summarizing serial data
In research settings, it is useful to summarize serial data, especially to 
compare subjects in different groups, but it may not be obvious how best 
to do this. The appropriate method must answer the question of interest 
and must be suitable for the data observed. Matthews1 provides a practical 
description of  a range of appropriate yet simple approaches that can be 
used in different situations. Each method works by calculating a particular 
summary statistic for each subject, such as an overall mean value, a slope 
of the line, or the maximum or minimum value as appropriate. These 
individual measures can then be used as the raw data to represent an 
individual’s experience. For example, if the summary measure is a mean, 
then these means can be used to compute the average of the means 
across all subjects and a standard deviation, and range and so on.  

Summary measures
Table 11.1 lists summary measures to use under a range of circumstances. 

Table 11.1 Choice of summary measure for different questions

Summary measure Aim 

Overall mean (equal time intervals)
To estimate the overall value of the • 
outcome for each subject Area under the curve (equal or 

unequal time intervals)

Maximum To estimate the highest value obtained• 

Minimum To estimate the lowest value obtained• 

Time to a given value To estimate how long it takes to reach • 
a critical value

Slope of the line To estimate how the measurement • 
changes over time

Reference
1 Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical 

research. BMJ 1990; 300(6719):230–5.
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Summarizing serial data
Comparing serial data in two groups
If the subjects come from two groups it may be informative to compare 
the groups. This can be done using the summary statistics for each subject 
and by averaging them within each group, and then comparing the group 
means using a statistical test such as a t test if the usual assumptions hold.

0 Note that it is incorrect to compare two groups of subjects with 
serial data by calculating means at each time point and doing t tests on 
each pair of means, for the following reasons:

Non-independence of tests• 
The series of data points for each individual are not independent 
of each other in the sense that in a particular subject values which 
are close in time will be more similar than values further away in 
time. This means that tests performed at different time points are 
not independent of each other – if a test at a particular time point is 
statistically signifi cant, then the tests done at the adjacent time points 
are likely to be signifi cant too simply because the values in individuals 
are correlated.
Shape of the trend in means• 
The trend in means at each time point may not provide a meaningful 
summary of the overall trend since it might not represent a typical 
individual. If different individuals peak at different times then this 
type of averaging will produce an overall curve that has been ‘over 
smoothed’ and does not represent any individual at all.

Procedure for summarizing serial data
Plot the relationship for all individuals separately to determine the • 
nature of the relationship
Choose the appropriate summary statistic that suits the data and • 
answers the question of interest (see Table 11.1)
Calculate the summary for each subject and then, if helpful, • 
summarize these as if you would if these were the raw data for the 
individuals 
If the individuals are in two groups, these groups can be compared • 
using tests based on the single summary calculated for each individual 
such as a t test or Mann Whitney U test (b Chapter 8, p. 237)
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Example: summarizing serial measures

These data are from a randomized controlled trial that compared 
multilayer bandaging followed by hosiery versus hosiery alone in cancer 
patients with lymphoedema of one limb.1 The main outcome was the 
severity of swelling in the affected limb measured at a maximum of 
fi ve time points. It was calculated as the difference in limb volume 
between the affected and normal limb as a percentage of the normal 
limb volume.  This outcome was measured on day 1, day 19, week 7, 
week 12, and week 24 in the treatment and control group.

The aim was to see if the treated group had a greater reduction 
in limb volume than the control group. Since the time intervals were 
unequal, the area under the curve was used as the summary measure 
for each patient. Figure 11.2 shows individual plots in one group.
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Results
The reduction in limb volume to week 24, calculated as the area • 
under the curve (see b Calculating area under the curve, p. 382) 
followed a Normal distribution and so the mean reduction in the 
intervention and control groups was compared using a two-sample 
t test
Intervention group (• n=32): mean reduction = 31.0%
Control group (• n=46): mean reduction = 15.8%
Difference (95% CI): 15.2 (6.2 to 24.2); P=0.001• 

Hence there was good evidence for a greater reduction in swelling 
in the intervention group showing that bandaging was effective.

Reference
1 Badger CM, Peacock JL, Mortimer PS. A randomized, controlled, parallel-group clinical trial 

comparing multilayer bandaging followed by hosiery versus hosiery alone in the treatment of 
patients with lymphedema of the limb. Cancer 2000; 88(12):2832–7.

Fig. 11.2 Individual plots for patients in one arm of the trial1.
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Calculating area under the curve
Example

The graph below shows the serial data for one patient in the randomized 
controlled trial of multilayer bandaging plus hosiery versus hosiery alone 
in patients with lymphoedema1 with the data listed alongside.
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Area under curve is calculated in sections using standard formulae for 
areas of rectangles and triangles in order to estimate the shaded area in 
the graph above:

Area 0–19: ½ • x 19 x 44 = 418
Area 19–49: (49–19) • x 44 – ½ x (49–19) x (44–21) = 975
Area 49–84: ( 84–49) • x 51 – ½ x (84–49) x (51–21) = 1260
Area 84–168: (168–84) • x 51 – ½ x (168–84) x (51–42) = 3906
Total: 6559• 

This can be divided by the total no. of days (168) to give a standardized 
value: 6559/168 = 39.0%

Note that here this is close to the mean value obtained by adding all 
values and dividing by 4 (44+21+51+42)/4 = 39.5 but in general the area 
under the curve is a better representation of the overall effect when 
time intervals are unequal.

Trapezium rule
In general the area under the curve is given by the sum of the individual 
areas. This is called the trapezium rule. In symbols this is:

n 1

i 1 1 i
i 0

1
(t t )( y )i2 + +1 i iti− +i 1t )i ( y +iti∑

Where ti is the time and yi is the value of the outcome variable.

Reference
1 Badger CM, Peacock JL, Mortimer PS. A randomized, controlled, parallel-group clinical trial 

comparing multilayer bandaging followed by hosiery versus hosiery alone in the treatment of 
patients with lymphedema of the limb. Cancer 2000; 88(12):2832–7.

Fig. 11.3 Serial data for one patient to illustrate the calculation of the area under 
the curve.
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Other summary measures for 
serial data
The following examples illustrate the use of other summary measures in 
research studies.

Example: summarizing by the proportion of time below 
a given value

The PITCH randomized controlled trial compared paracetamol plus ibu-
profen for treatment of fever in children with paracetamol or ibuprofen 
alone.1 The primary outcome was the time without fever in the fi rst 4 
hours after the fi rst dose was given, calculated from a series of tempera-
ture measurements recorded automatically every 30 seconds. 

The • series of data in each child was summarized by the 
proportion of time that child had temperature below 37.2 °C 
This value was averaged across all children in each group and • 
compared
The combined treatment showed a greater length of time without • 
fever compared with each drug alone (see paper for full details)

Example: summarizing using the slope of the line

A UK air pollution study investigated the relationship between peak fl ow 
rate in children and outdoor air pollution, over 9 weeks.2 For each child, 
the relationship was analysed between pollution level and peak fl ow 
rate, giving a slope of the line (regression coeffi cient) for each child.  

The • series of data in each child was summarized by the slope of 
the line
This value was averaged over all children to quantify the evidence • 
that overall there was a negative relationship between air pollution 
and peak fl ow rate
The combined slope showed that there was no strong evidence that • 
air pollution affected peak fl ow rate in healthy children (see paper for 
full details of analysis and results)

References
1 Hay AD, Costelloe C, Redmond NM, Montgomery AA, Fletcher M, Hollinghurst S et al. 

Paracetamol plus ibuprofen for the treatment of fever in children (PITCH): randomised con-
trolled trial. BMJ 2008; 337:a1302.

2 Peacock JL, Symonds P, Jackson P, Bremner SA, Scarlett JF, Strachan DP et al. Acute effects 
of winter air pollution on respiratory function in schoolchildren in southern England. Occup 
Environ Med 2003; 60(2):82–9.
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Summary measures approach: key 
points
Advantages of the summary measures approach

They are conceptually simple and relatively easy to use• 
The method and results are straightforward to understand• 
They can be used when the time intervals are unequal • 
They can usually still be used when there are missing data at some time • 
points
They can be adapted to answer a range of questions• 
They are statistically valid• 

Disadvantages of summary measures approach 
It may be diffi cult to identify the best summary measure until the data • 
are collected

Other points
It may be appropriate to calculate more than one summary variable • 
for a set of serial data. For example, with a series of lung function 
measurements both the mean value and minimum value may be 
informative. 
Missing observations can be accommodated:• 
For example, in the multilayer bandaging trial1 there were some missing 
data since a few patients did not have readings at all time points. To 
allow for this, three analyses were done: (i) with all data available and 
patients averaged over their own period of observation, (ii) with all 
patients with complete data up to 84 days, and (iii) with all patients 
with data up to 168 days. The three analyses were compared as a 
test of sensitivity. This showed virtually identical results under each 
scenario. If different results had been obtained this would suggest that 
there was some systematic differences in subjects with missing data.
Multiple regression analysis may be used to adjust the analyses for • 
other individual-level confounding variables. The summary measure is 
used as the outcome in the regression model and other individual-level 
factors are included as predictors (b Multiple regression, p. 406).
Serial discrete data such as pain scores may also be analysed using • 
summary measures
The method of summary measures is a two-stage method because • 
summary statistics are calculated for each subject and then these are 
analysed in a separate analysis
If the summary measure is a trend such as a slope then strictly speaking • 
it may be necessary to take the correlation between observations in 
each individual into account when calculating the overall summary slope.

Further reading on summary measures
Matthews (1990)• 2 provides a full account
Matthews (1993)• 3 discusses the calculation of weighted averages of 
summary measures
Armitage (2002)• 4 discusses problems with summary measures and 
alternative approaches
Altman (1991)• 5 discusses summary measures and gives examples
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Other approaches to serial data
Levels of data
Serial data can be thought of as having a two-level structure in that we 
start with subjects, and within each subject there are multiple observa-
tions. It is often described in the following way:

At level 1 • we have the different subjects, and so level 1 represents the 
variability between the subjects
At level 2 • we have the serial observations within each of the subjects, 
and so level 2 represents the variability within each subject
The correlation between observations within an individual is nearly • 
always much greater than the correlation between individuals at similar 
time points

Other approaches
Rather than using the two-stage summary measures approach, other more 
complex approaches can be used to analyse serial data in a single, one-
stage approach. These are listed here with some general points about 
their use.

Repeated measures analysis of variance 
This is an extension of one-way analysis of variance (• b One-way 
analysis of variance, p. 280)
The method • tests for general differences across time categories, 
i.e. it tests whether there are any differences between mean levels of 
the outcome at different times 
Specifi c relationships such as a linear trend or rise-and-fall are not • 
tested
It assumes the ‘time’ effect is the same for all subjects• 
The results need to be interpreted in the light of the actual relationship • 
observed by plotting and summarizing the raw data, since a signifi cant 
result may not necessarily imply that there is a specifi c relationship
Post-hoc tests can be done to test for a specifi c relationship or for • 
differences between chosen time points
0•  Missing data are problematic since an individual is omitted 
from analysis if they have a value missing at any time point and so the 
method is ineffi cient. It is also potentially biased if many individuals 
are left out and/or those left out are atypical in some way. For these 
reasons statisticians generally prefer to use multilevel models (also 
known as mixed or random effects models, see next section) since 
these allow individuals to be included in the analysis even if they have 
missing data at some time points.

Multilevel model (also known as mixed model or random effects model)
This method accounts for the two-level structure in a single model by • 
specifying the two sources of variation – between subjects and within 
subjects
It is used to test a specifi c mathematical trend such as a linear or • 
exponential rise or a quadratic rise-and-fall
The trend to be tested must be known in advance and incorporated • 
into the model
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Individuals with data missing at some time points can still be included as • 
long as data are missing at random (b Missing data, p. 402)
For further details and examples see • b Multilevel models (p. 436)

Generalized estimating equations (GEEs) 
This method accounts for the two-level structure by specifying the • 
correlation between the serial data points in each subject
It is used to test a specifi c mathematical trend such as a linear or • 
exponential rise or a quadratic rise-and-fall
The trend to be tested must be known in advance and incorporated • 
into the model
For further details and examples see • b Generalized estimating 
equations p. 438

Choice of method
This is a matter of judgement, but the following points may be helpful:

Summary measures are relatively simple to use and interpret, and are • 
statistically sound and robust
The appropriate summary measure may be hard to defi ne and so a • 
more general one-stage model such as a multilevel model or GEE may 
be needed
It is important to • plot the data for the individuals before doing any 
analysis to see what the relationships look like and how much they vary 
between individuals
When reading reported analyses on serial data look for information • 
on the individual trends either as graphs or as meaningful summary 
statistics to guide the interpretation of the results
If there are missing data or unequal numbers of data points in the • 
individuals, it is important to decide how to deal with this statistically 
and consider the reasons they are missing, i.e. if it may lead to bias

Note
Where the outcome is a continuous variable and the dataset is reasonably 
large, multilevel modelling and GEEs give very similar results. The sections 
on multilevel models and GEEs give more details on their use and on how 
to decide which multifactorial method to use.
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Cluster samples: units of analysis
Independent observations
Standard statistical methods make the assumption that observations are 
independent of each other. For example if the data are a set of single 
blood pressure measurements on 10 patients, then these values will be 
independent of each other, so that knowing one patient’s blood pressure 
will not allow us to predict another’s.  

If we took three blood pressure measurements on each patient to give 
30 readings in all, these readings would not all be independent because 
repeated measures in the same patient will be correlated with each other. 
In this example the patient is the unit of analysis and so the analysis 
should be based on the patient. One way to do this is to use a summary 
statistic for each patient such as the mean of the three values to give 10 
independent values.

Consequences of ignoring non-independence
If non-independent data are analysed as if they were independent, the 
calculated overall variability is reduced and is too small. This leads to 
confi dence intervals which are too narrow and P values that are too small, 
potentially leading to spurious signifi cant results. Altman cites an example 
where 3944 observations from 58 patients were analysed as if they were 
independent and gave a spuriously tiny P value.1 The example below illus-
trates how the P value changes when repeated measures are analysed as if 
they were independent observations.

Example

In a study in 71 preterm babies, repeated measures of lung function 
were made on up to six occasions. Table 11.2 shows two t tests to 
compare mean lung function in babies who were diagnosed with mod-
erate (15) or severe (6) bronchopulmonary dysplasia (BPD), (i) treating 
all observations as if they were independent (n=85 readings) and (ii) by 
analysing the mean measure for each baby (n=21 babies). The lung func-
tion measure shown here is resistance index analysed on a log scale. 

The correct analysis gives a non-signifi cant result (P=0.278) but the 
wrong analysis which treats all the data as independent obtains a smaller 
P value and is statistically signifi cant (P=0.044).

Table 11.2 t test in clustered data ignoring the clustering (i) and 
allowing for clustering (ii)

Group n Mean P value

(i) Moderate BPD 70 4.84 0.044

Severe BPD 15 5.04

Difference 85 0.20

(ii) Moderate BPD 15 4.84 0.278

Severe BPD 6 5.00

Difference 21 0.16
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(i) The data are analysed incorrectly, by treating the sets of repeated 
measures as if they were all from different subjects, giving n=85 
observations.
(ii) The data are analysed correctly using the average of all readings 
for each baby, giving n=21 observations.

Clinical trials
In many clinical trials, individual patients are randomly allocated to a par-
ticular treatment and then the outcomes are summed and compared in 
each treatment group using individual patient data. In other words the 
randomization is at the patient level and so the analysis should also be 
conducted at the patient level. The unit of analysis is the patient.

By contrast, in cluster randomized trials whole groups are allocated 
to particular interventions and so the randomization is at the group 
level. In general, individuals within a group will be more alike than 
individuals in different groups and so their values will not be independent 
of each other.2

Therefore, in cluster randomized trials the unit of analysis is the 
group. If the analysis is done on individual patients as if they were 
independent observations, the statistical methods will give P values and 
confi dence intervals which are too small and so there may be spurious 
positive fi ndings.3 In addition when planning a cluster randomized trial the 
sample size calculations must be based on the groups, otherwise the 
total variability will be underestimated and the calculations will give too 
few patients. This means that the power of the study will be less than 
expected and so the study may be inconclusive.4.5

Summary points
Identify the correct unit of analysis and consider this in planning and • 
analysing the study 
The assumption of independence matters – if untrue, it affects the • 
results of statistical analyses

References
1 Altman DG, Bland JM. Statistics notes: units of analysis. BMJ 1997; 314(7098):1874.
2 Bland JM, Kerry SM. Statistics notes. Trials randomised in clusters. BMJ 1997; 315(7108):600.
3 Kerry SM, Bland JM. Analysis of a trial randomised in clusters. BMJ 1998; 316(7124):54.
4 Kerry SM, Bland JM. Sample size in cluster randomisation. BMJ 1998; 316(7130):549.
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Cluster samples: analysis
Appropriate analysis for cluster samples
It is important to use the right unit of analysis for cluster samples. The 
following methods can be used to do this:

Summary statistics two-stage approach• 
Regression with adjusted standard errors• 
Multilevel modelling• 
Generalized estimating equations (GEEs)• 

Summary statistics two-stage approach
This is based on calculating an appropriate summary statistic for each • 
cluster 
Treat the cluster summary statistic as an ordinary observation (as an • 
item of raw data) and summarize these in each group that is to be 
compared, or across the whole sample if there is only one group
The number of observations is the total number of clusters, not the • 
total number of subjects
This is a similar approach to that described for longitudinal data • 
(b Serial (longitudinal) data, p. 378)

Calculating summary statistics (two-stage method) with 
different outcomes in a cluster trial

Continuous outcome, e.g. height of each subject
1. Calculate the mean height separately in each cluster by averaging 

the  heights of the subjects in the cluster l cluster mean
2. Calculate the average of these cluster means for each group
3. Compare groups in the usual way with a two-sample t test 

(assuming the cluster means are Normally distributed)

Binary outcome, e.g. improved yes/no
1. Calculate the proportion improved in each cluster
2. Calculate the average of these cluster proportions for each group
3. Compare groups in the usual way with a two-sample t test as above 

Counts, e.g. number of infections in a period of time
1. Calculate the mean number of infections in each cluster
2. Calculate the average of these cluster means for each group
3. Compare groups in the usual way with a two-sample t test as above

Notes
Cluster means and cluster proportions may be Normally distributed • 
even for non-Normal outcome data as a consequence of the central 
limit theorem (b Central limit theorem, p. 228)
A further refi nement is to ‘weight’ the analysis where there are • 
different total numbers of individuals in the clusters (details omitted)
These methods assume there are similar numbers of individuals in • 
each cluster
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Example: analysis of a cluster randomized trial (1)

A cluster randomized trial examined whether students use or avoid 
newly shaded areas at 51 secondary schools in Australia.1 Areas with full 
sun were identifi ed in each school and shades installed in these areas in 
the intervention schools. The primary outcome was the change in the 
mean number of students using these areas at time points before and 
after the intervention was installed. 

Analysis and results
The clusters are the schools (26 control, 25 interventions schools)• 
A two-stage summary measures analysis was used• 
The mean number of students using the designated areas pre- and • 
post-intervention was calculated in each school
The pre-and post-intervention values were subtracted to give • 
the mean change for each school and then averaged in the two 
randomization groups
These mean changes were analysed in a two-sample t test • 
The mean change in control schools was –0.03 compared with +2.67 • 
in the intervention schools (P=0.011) showing that students do use 
rather than avoid newly shaded areas

Regression with adjusted standard errors one-stage 
approach

It is possible to analyse clustered data in some statistical packages by 
using the individual observations but choosing an option which adjusts 
the standard error for the clustering. This provides confi dence intervals 
and P values which are corrected for non-independence. The regression 
coeffi cients themselves are not changed. The advantage of this method 
is that it is relatively easy to carry out  and to interpret but it has the 
disadvantage that it does not use the full data structure in the analysis.

Multilevel modelling and GEEs one-stage approach
These methods take the two-level structure into account in one single 
model. They have the advantage that the estimates and standard errors 
are mutually adjusted for clustering and it is possible to add other vari-
ables into the model that affect the outcome at either the individual or 
cluster level. The disadvantage is that the methods are not easy to imple-
ment and interpret, and are not available in all statistical packages (see b 
Multilevel models, p. 436, b Generalized estimating equations, p. 438).



392 CHAPTER 11 Analysing multiple observations

Example: analysis of a cluster randomized trial (2)

A cluster randomized trial in 61 general practices, with 558 children 
compared the use of an interactive booklet on respiratory tract infec-
tions in reducing unnecessary general practitioner (GP) consultations 
and antibiotic use.2 

Analysis and results
The clusters are the general practices• 
A 1-stage multilevel approach was used to account for clustering • 
There was no signifi cant difference in reconsulting with odds ratio • 
0.75 (95% CI: 0.41 to 1.38) but there was a reduction in antibiotic 
prescribing, odds ratio 0.29 (95% CI: 0.14 to 0.60)
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Analysing multiple 
variables per subject

Introduction
In this chapter we describe the statistical issues involved in analysing studies 
with more than one variable for each subject such as when adjusting for 
confounding or nuisance variables or wishing to disentangle the effect of 
multiple variables on a single outcome. There is a wide range of modelling 
techniques that can be used and so we describe the approaches com-
monly used when analysing different outcome variables and/or different 
study designs. We describe the approaches in terms of when the methods 
are appropriate, how they work, and how the results are interpreted. 
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Multiple variables per subject
Introduction
It is common in medical research to have several variables for each 
subject, for example:

When collating death rates by age and sex where each subject is • 
categorized according to their age and sex
When exploring the effects of several factors predicting an outcome, • 
such as baby’s birthweight or risk of heart attack in adults where 
several factors are potentially important 
When many variables have been obtained for each individual but it is • 
desirable to reduce these to a smaller combination of key factors. For 
example when deriving a simple symptom score from a wide range of 
symptoms
When seeking to determine groups of variables that characterize • 
particular groups, such as when looking for clusters of individuals who  
respond particularly well to an intervention

Standardization
In the fi rst example with death rates, it may be important to adjust the 
death rates for age and sex in order to make meaningful comparisons 
between populations since these factors have strong effects. The fi rst step 
is usually to produce age/sex-specifi c rates. If different populations are 
being compared then the differences in age/sex structure can be adjusted 
for using direct or indirect standardization to produce standardized 
death rates as described in Chapter 10 (b Direct standardization, p. 372, 
Indirect standardization, p. 374).  

Multifactorial (multivariable) modelling
In the second example with an outcome such as baby’s birthweight and 
several factors that may predict birthweight, multifactorial regres-
sion may be used simultaneously to analyse and disentangle the predic-
tive factors. There are a range of modelling methods that can be used 
depending on the nature of the outcome and the design of the study. The 
commonly used ones are listed in Table 12.1 and described in detail later 
in this chapter. 

Multivariate modelling
In the third example, principal components analysis can be used to 
reduce a large dataset to a smaller one that captures nearly all of the 
information. In the fourth example, factor analysis or cluster analysis 
may be used to identify groups of similar individuals. 
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Table 12.1 Multifactorial and multivariate modelling methods 
described in this chapter

Design or aim of study Type of outcome 
variable

Modelling method

One observation per 
subject

Continuous Multiple regression

One observation per 
subject

Binary Logistic regression

One observation per 
subject

Time to an event Proportional hazards (Cox) 
regression

One observation per 
subject

Counts Poisson regression

More than one 
observation per subject: 
serial data or repeated 
measures or a cluster 
design

Continuous Multilevel model (also 
called mixed model or 
random effects model) 

or generalized estimating 
equations (GEEs)

Binary

Time to an event

Counts

Many variables: aim is 
to reduce to a smaller 
number 

Any of continuous, 
discrete, binary, 
categorical*

Principal components 
analysis

Many variables: aim 
to identify groups of 
individuals who are similar

Any of continuous, 
discrete, binary, 
categorical*

Cluster analysis 
Factor analysis

*Categorical variables need to be analysed as dummy variables (see b Multifactorial methods: 
overview, p. 396).



396 CHAPTER 12 Analysing multiple variables

Multifactorial methods: overview 
Introduction
In this section we outline general ‘nuts and bolts’ issues that arise in using 
multifactorial methods, such as how they work, how to use them, and 
what the results mean. Specifi c details of the individual methods are given 
in their own sections later in this chapter. 

How the methods work 
A mathematical model is fi tted to a common set of variables for each • 
subject simultaneously
The modelling process identifi es which variables are related to the • 
outcome after adjusting for each of the others in the model
The results are given in the form of regression coeffi cients, which are • 
the estimated effect of each variable on the outcome after adjusting for 
all the other variables included in the model
The calculations are complex so computer packages are used• 

Types of data that can be used
Outcome variables
Modelling methods are available for the following types of data:

Continuous• 
Binary• 
Discrete (counts)• 
Time to an event• 

Predictor variables
All modelling methods allow any combination of these types of data:

Continuous• 
Binary• 
Discrete (counts)• 
Time to an event• 

Assumptions of methods
All modelling methods make assumptions about the data that must 
hold true else the results may be invalid. Examples are:

The observations are independent of each other• 
The relationship is linear• 
There is similar variability in each of the groups • 
The data follow a specifi c distribution • 

Meaning of coeffi cients
This is different for different modelling methods and depends on the 
nature of the outcome variable:

Continuous data: slope of the line• 
Binary data: odds ratio• 
Time to an event data: hazard ratios• 
Count data: rate ratios• 
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Dummy variables
When non-ordered categorical variables are used in regression models 
it is necessary to set up dummy variables. Some statistical packages set 
up dummy variables automatically, but it is important to understand the 
meaning of a dummy variable to be able to interpret results when they 
are used.  

If the categorical variable has three categories then there will be two 
dummy variables representing two of the three categories and the other is 
the reference category. 

In general for any categorical variable with n categories, one category 
will be the reference level and there will be n–1 dummy variables, each of 
which represents a comparison with the reference category.

Example

The variable ‘marital status’ is recorded in three categories: 
(i) married, (ii) single, (iii) divorced or widowed or separated
The two dummy variables, variable1 and variable2 are defi ned as 
follows:
variable1  = 1 if the woman is single, = 0 otherwise
variable2  = 1 if the woman is divorced, widowed or separated, 
                = 0 otherwise

Hence for a married woman, variable1 and variable2 are both be zero, 
and this is the reference level.

The two regression coeffi cients will therefore represent the following 
comparison:
variable1: single women versus married women
variable2: divorced/widowed/separated women versus married women
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Multifactorial methods: model selection
Choosing the best model
Sometimes we know in advance which variables to include in a multifacto-
rial regression model. In this situation, we test the variables of interest 
and omit any that are not signifi cant, if we wish. Sometimes it may be 
helpful to keep a non-signifi cant variable in the model if past experience 
has shown that that particular variable is important. The strategy used is 
driven by the purpose of the analysis. If the aim is to identify important 
predictor variables, it makes sense to leave out non-signifi cant ones, i.e. 
ones where the evidence for a relationship is weak. If the purpose is to 
adjust for all important prognostic factors, then it may be best to retain all 
known important variables. 

Automatic selection methods
Statistical packages that do multifactorial regression may offer a type 
of automatic selection procedure, forward or backward stepwise 
methods. These work as follows:

Forward
Put each variable in the model alone• 
Discard any that are not statistically signifi cant• 
Of the remaining variables, select the one which is most strongly • 
related to the outcome variable
Add the remaining variables one at a time in order of their strength of • 
relationship with the outcome, until adding an extra variable does not 
contribute signifi cantly to the model

Backward
This uses a similar process but in reverse• 
All predictor variables are put into the model and the one with the • 
weakest relationship with the outcome is removed
The process is repeated until all the remaining variables are signifi cantly • 
related to the outcome

Modelling in groups of similar variables
If there are many predictor variables it is helpful to consider them in 
groups of similar variables. For example in a study of survival from breast 
cancer three groups of variables were analysed: (i) socioeconomic/demo-
graphic factors, (ii) clinical/pathological factors, and (iii) distant metastases.1 
In this study, the best fi tting model in each group was presented since this 
made sense clinically. In other situations, after this step, it may be helpful 
to combine the variables in the groups together in a single model, thus 
building up the model conceptually. 
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Chronological order
If factors affect an outcome at different time points, it may be sensible to 
fi t a sequence of models where the factors are added in chronological 
order. This allows the exploration of how the outcome is affected by 
factors over time, and may shed light on underlying mechanisms. 

Common sense 
It is important, both in fi tting and interpreting models with many • 
explanatory variables, to examine each possible predictor in relation to 
the outcome on its own to understand the relationship
It is important to look at the • sizes of effects rather than just rely on 
P values alone to determine and interpret a multifactorial regression 
analysis
It is unhelpful to present an analysis that includes many predictor • 
variables simply with P values alone and no estimates

Further details
On quantifying how well a model fi ts: see • b How well the model fi ts, 
p. 418
On choosing and fi tting models: see Kirkwood and Sterne, Chapter 29• 2 
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Multifactorial methods: challenges
Introduction 
Multifactorial methods are powerful statistical tools and yet present many 
challenges. The topics below describe some of these.

Fitting the right model
Computer packages are tantalizingly easy to use for very complex anal-
yses but will produce garbage if garbage is fed in! For example, we need 
to check that relationships we are modelling are sensible, such as whether 
a linear relationship is reasonable, or whether the trend fl attens off. 
Inspection of the data and discussions between clinical and statistical col-
leagues is often very helpful. The same considerations apply when inter-
preting a multifactorial analysis in a paper or report. 

Close correlation between variables (colinearity)
It is common to fi nd that some predictive factors are correlated with 
each other and sometimes quite strongly so. This makes modelling 
tricky because two very highly correlated variables will effectively cancel 
each other out when modelled together. For this reason it is helpful 
to examine the relationship between variables that are to go into the 
model beforehand to guide the analysis (b Correlation matrix, p. 294).
If the variables are highly correlated, choices may need to be made. In 
some situations it is reasonable to choose one of a few highly correlated 
variables to represent them all such as when adjusting for social class 
where several possible proxies for social circumstances could be chosen 
and it may not matter which. Alternatively, if there is a group of corre-
lated variables it may be helpful to reduce them to a smaller set by using 
principal components analysis (b Principal components analysis, p. 441). 

Infl uential data points
On occasion a particular data point may be very infl uential in that it lies 
away from the other data points but strongly affects the slope of the line. 
Such values can be detected when doing preliminary plots of the data and 
can then be checked to determine if the potential outlying value is correct 
or was wrongly recorded. Alternatively there are more formal statistics 
that can be used to identify infl uential points such as Cook’s distance (see 
Kirkwood, Chapter 121). If an outlier and infl uential point is a valid obser-
vation, then a sensible approach is to do a sensitivity analysis with and 
without it, to guide interpretation. 

Missing data
This is potentially a serious problem and is dealt with in a separate section 
(b Missing data, p. 402).
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Presenting the appropriate statistics in a paper or report
Computer packages which perform complex multifactorial analyses in 
fractions of a second often produce a seemingly disproportionate quantity 
of results. Hence it can be diffi cult to know which bits are relevant and 
appropriate to extract and interpret and/or present in a paper or report. 
Peacock and Kerry2 give guidance on this with examples.

References
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Missing data 
Why data are missing
It is common to have missing data for some variables. The extent to which 
data are missing often varies among variables, for example, in studies about 
babies, birthweight is usually recorded but gestational age, crown–heel 
length and head circumference may be missing for a few babies, smoking 
status of the mother may be missing for some more, and family income 
for even more! This means that any multifactorial analysis that includes 
all of these variables can only be done using the subjects with complete 
data. This is potentially problematic since the sub-sample of subjects with 
complete data may not be representative of all subjects, especially if the 
tendency for certain data to be missing is linked to the main outcome. 
Hence analyses based on sub-samples with complete data may provide 
misleading results.

Types of missing data 
There are several types of missing data patterns where one variable is 
missing:

‘Missing completely at random’ (MCAR)• 
This means that the probability that an observation is missing does not 
depend on any of the other observations. In other words, there are no 
systematic differences between the values that are present and those 
that are missing. For example weight may be missing in some subjects 
in a study because the weighing scales were broken.
‘Missing at random’ (MAR)• 
This is weaker assumption than MCAR, and means that the probability 
that a data value is missing, given all other data values, is independent 
of its true value. Hence it may depend on other values in the dataset 
but not on the unknown value itself. For example missing data on 
weight would be higher than recorded values if more men refused to 
be weighed than women, since men tend to weight more.
Missing not at random (MNAR)• 
This means that there are systematic differences between the missing 
data values and the observed ones, even after the data values are 
taken into account. For example if weight is missing for some subjects 
because they were too heavy for the scales. 

Dealing with missing data
There are some ad hoc methods of dealing with missing data, for 
example:

0 • To replace a missing value by the overall mean of the non-missing 
values. This obviously assumes that the missing values are similar to the 
missing ones, i.e. they have the same mean value. This is often not true 
and so this method is not recommended
0 • When the fi nal value in a series of measurements is missing, it is 
common to use the last observation recorded to substitute for the 
missing fi nal value. This is known as the ‘last observation carried 
forwards’ (LOCF) method. This has been shown to be very fl awed 
and is not recommended 
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In general, single imputation of missing values is unreliable because it 
makes untested assumptions about the missing data. 

Multiple imputation
This is a complex statistical approach whereby missing data are ‘recov-
ered’ and analyses performed to attempt to replicate the analyses that 
would have occurred if no data had been missing. It is essentially a Bayesian 
approach (b Chapter 14, p. 477). Broadly it works as follows:

The missing data are replaced by values predicted using data from • 
other related variables that are not missing.
This is repeated many times to take into account the uncertainty in the • 
estimated missing values. Statistical analyses are then performed on 
each of the datasets in the same way as would have been done on the 
single original dataset had all the data been present.
Multiple imputation is a powerful statistical technique and can be • 
performed using some standard statistical programs such as Stata. 
However, since the procedure requires the analyst to model the 
distribution of variables with missing values, it is critical that this 
modelling is done correctly to ensure that the resulting analyses are 
valid.

Further reading
For a helpful overview of methods and pitfalls, see Sterne • et al.’s 
article1

For materials and courses see the website maintained by James • 
Carpenter and Mike Kenward  (M www.missingdata.org.uk)

Reference
1 Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG et al. Multiple imputation 
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Generalized linear models
The big picture
The modelling techniques listed in row 5 of b Table 12.1, (p. 395) belong 
to a broad class of statistical models called generalized linear models. 
This means that many of the original multifactorial methods have been 
cleverly extended in recent years, and generalized to more complex 
situations.

Generalized linear models which include k predictor variables all 
take the following form:

b b x b x b x b xk kx( )y = b +b x b x0 1b 1 2bb 2 3bb 3

where:
f(y) • is a function or transformation of the outcome y which converts 
the outcome y to a linear function of the xs. It is known as the link 
function
f(y) • depends on the type of data 
x• 1,x2 … are the predictor variables
b• 0,b1,b2 … are the regression coeffi cients
b• 0  is the intercept and b1,b2,b3 , etc. provide the effect estimates for 
the variables x1,x2,x3, etc.

Simple linear regression
The simple equation of a straight line y = a + bx is the simplest example 
of a generalized linear model and the interpretation of results of all such 
models, whether simple or complex have much in common.
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Multiple regression
Details of multiple regression

It is used for a continuous outcome variable, e.g. birthweight, height, • 
peak fl ow rate
It enables us to disentangle the effects of several predictor variables • 
on a continuous outcome, either to test hypotheses about predictive 
factors or to produce a predictive model
The predictor variables can be any mixture of continuous, binary, or • 
categorical data
The method works by fi tting linear relationships between the outcome • 
and the predictors
It gives a set of regression coeffi cients that represent the relationship • 
between each predictor variable and the continuous outcome adjusted 
for all the other variables in the model
It fi ts a model of the form:• 

y b b x b x b x b xk kx+b + + +b x b x +0 1b+ 1 2b+ b 2 3b+ b 3 ...

where:
y•  is the outcome 
x• 1, x2 … are the predictor variables
b• 0, b1, b2 … are the regression coeffi cients
b• 0  is the intercept and b1, b2, b3 , etc. are the regression coeffi cients 
(estimates) for the variables x1, x2, x3, etc.

Approach to the analysis
1. Consider which predictor variables may be important in advance
2. Investigate the relationship between each of these and the outcome 

variable separately before doing the multiple regression, to guide both 
the analysis and the interpretation:

Continuous predictor variable:•  draw a scatter plot and do a simple 
linear regression 
Binary predictor variable:•  calculate summary statistics of the 
outcome such as mean, standard deviation, range in the two groups
Categorical predictor variable:•  calculate summary statistics of the 
outcome such as mean, standard deviation, range in each of the 
categories

3. Choose the modelling approach to be used (b Multifactorial 
methods: model selection, p. 398)
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Tests and estimates
If there is no relationship between y and xi after adjusting for the other xs, 
then bi will be zero (the null value). The interpretation of the coeffi cients 
depends on whether the predictor variable is continuous, binary, or cat-
egorical. The precise meanings are given as follows.

Interpreting the coeffi cients from multiple regression
Continuous predictor variable• : slope or gradient of the line, 
i.e. the change in the outcome for a unit change in the predictor
Binary predictor variable• : difference in the mean value of the 
outcome between the two levels of the predictor
Categorical predictor variable with • n categories: gives n–1 
values where each is the difference in mean value of the outcome  
for a particular category versus the reference category (see Dummy 
variables for more details on how this works, b Multifactorial 
methods: overview, p. 396)

Assumptions
These mirror closely the assumptions for simple linear regression 
(b Simple linear regression, p. 296):

1. The relationship is linear
The straight line relationship can be checked by plotting the relationship 
for each continuous predictor variable separately before carrying out 
the multiple regression. If the relationship is steadily increasing but not 
linear, it may be possible to transform the data to linearize the relation-
ship ( b Transforming data, p. 330).

2. The distribution of the residuals is Normal
To test this, draw a histogram or a Normal plot of the residuals.

3. The standard deviation of the outcome y is constant over all values 
of each continuous predictor x

This can be checked from a scatter plot of y by x for each continuous x or 
plot the residuals against the x, to check that the spread of the residuals is 
similar across the range of x.

Note
As with simple linear regression, a transformation may simultaneously 
correct non-linearity, non-Normal residuals and a non-constant variance. 
It can be tricky to interpret a log-transformed regression coeffi cient – see 
Peacock and Kerry, Chapter 9,1 for a worked example.

Reference
1 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Multiple regression: examples
Using multiple regression to test hypotheses

A UK study evaluated children’s language ability after early detection 
of permanent hearing impairment. Table 12.2 shows an extract of the 
results with differences between children with early versus late diag-
nosis of hearing loss. The differences are shown before and after adjust-
ment for severity of hearing impairment and maternal education using 
multiple regression. The children’s scores were normalized by using z 
scores, which represent the number of standard deviations by which 
the score differs from the mean score among a sample of age-matched 
control children with normal hearing. 

Table 12.2 Receptive language in children with hearing impairment 
confi rmed at ≤9months (n=45) versus >9months (n=56)

Measure Mean z score Mean difference (95% CI)

≤9 m >9 m Unadjusted Adjusted*

Test for reception of 
grammar

–1.46 –2.25 0.78 
(0.08 to 1.48)

0.90 
(0.32 to 1.47)

British picture vocabulary 
scale

–1.86 –2.36 0.50 
(–0.11 to 1.11)

0.64 
(0.13 to 1.16)

Aggregate score –1.76 –2.38 0.61 
(–0.02 to 1.24)

0.76 
(0.26 to 1.27)

Aggregate score minus 
non-verbal

–0.82 –1.68 0.86 
(0.32 to 1.40)

0.82 
(0.31 to 1.33)

*Adjusted for severity of hearing impairment, maternal education.

Interpretation
Each row of the table is a separate multiple regression analysis where • 
the outcome is the measure named in the fi rst column
In each multiple regression the outcome has been adjusted for the • 
same variables, severity of hearing impairment, maternal education
The results are presented as mean differences between the two • 
groups, unadjusted and adjusted
The adjustment has increased the magnitude of the difference for • 
all measures except ‘aggregate score minus non-verbal’ where the 
difference is slightly smaller
All adjusted differences are statistically signifi cant as shown by the • 
95% confi dence intervals, which exclude the null value of zero
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Example (continued)

Conclusions of study
The study concluded that early detection of hearing loss was • 
associated with higher scores for language (see paper for more 
details1)

Notes 
All mean z scores were negative, showing that these children had • 
poorer language attainment than children of the same age without 
hearing loss
This is important information to aid interpretation showing the • 
importance of presenting the means in the two groups as well as the 
differences

Reference
1 Kennedy CR, McCann DC, Campbell MJ, Law CM, Mullee M, Petrou S et al. Language 

ability after early detection of permanent childhood hearing impairment. N Engl J Med 2006; 
354(20):2131–41.
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Multiple regression: examples 
(continued)
Using multiple regression to produce an equation 

A study of factors affecting fetal growth in 1513 singleton babies used 
multiple regression to adjust the babies’ birthweights for their moth-
er’s height, the sex of the infant, and mother’s parity. The birthweight 
was analysed as a ratio of the observed birthweight to the expected 
birthweight-for-gestational age derived from UK birthweight standards. 
Table 12.3 shows the adjusted coeffi cients.

Table 12.3 Results of multiple regression to predict birthweight

Variable Regression coeffi cient 95% CI

Height (cm) 0.0036 0.0026 to 0.0046

Sex (female=1, male=2) 0.0440 0.0311 to 0.0569

Parity (1st baby=0, 2nd or later=1) 0.0353 0.0224 to 0.0482

Intercept 0.3335 0.1651 to 0.5019

Interpretation
The coeffi cient for height, 0.0036, estimates the difference in • 
birthweight ratio between two women whose height differed by 1 cm
The coeffi cient for sex, 0.0440, estimates the mean difference in • 
birthweight ratio between boys and girls
The coeffi cient for parity, 0.0353, estimates the mean difference in • 
birthweight ratio between second or later babies and fi rst babies
The intercept is a constant that estimates the value of the birthweight • 
ratio when maternal height is zero
All coeffi cients are statistically signifi cant, as shown by the 95% • 
confi dence intervals, which exclude the null value, zero
The multiple regression results correspond to the following equation• 

BW ratio = 0.3335 + (0.0036 x height) + (0.044 x sex) + (0.0353 x parity)

The equation was used to adjust each baby’s birthweight for the • 
maternal and infant variables which were regarded as ‘nuisance’ 
variables in this context
The resulting adjusted birthweight ratio was used as the outcome • 
variable in further multifactorial analyses of smoking, alcohol, and 
other lifestyle factors on fetal growth

Notes 
In order to use the equation it is necessary to know the coding that • 
was used for sex of infant and parity
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Differences in birthweight ratios have an easy interpretation as • 
a percentage difference: for example the birthweight ratios 1.05 
and 1.01 have a difference of 0.04 and so the difference in the two 
birthweights is 4%
In this example the • equation was used to compute an adjusted 
outcome (see below for further details); in other situations an 
equation may be required to compute a set of predicted 
values such as when computing predicted values for lung function 
measurements, given a subject’s age, height, and sex

Additional details: how to calculate adjusted birthweight

The researchers adjusted the birthweight ratios to height=160 cm, 
male sex, and parity 1 on the advice of the study obstetrician. This was 
achieved using the following equation derived from the original multiple 
regression:1

Adjusted BW = 

BW ratio – 0.0036 x (height–160) – 0.044 x (sex–2) – 0.0353 x (parity-1)

Where sex was coded 1 (female), or 2 (male); and parity was coded 0 
(fi rst baby), 1 (second or later baby)

So for a mother of height 155 cm, who had a girl who was her fi rst baby, 
with a BW ratio of 1.00, the adjusted BW was given by:

1.00 – 0.0036 x (155–160) – 0.044 x (1–2) -– 0.0353 x (0–1)
=1.0973

Reference
1 Brooke OG, Anderson HR, Bland JM, Peacock JL, Stewart CM. Effects on birth weight of 

smoking, alcohol, caffeine, socioeconomic factors, and psychosocial stress. BMJ 1989; 
298(6676):795–801.
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Multiple regression and analysis of 
variance
Analysis of variance table for multiple regression
The results of a multiple regression can be shown as an analysis of vari-
ance (anova) table, (b Analysis of variance table, p. 284). To illustrate, 
Table 12.4 shows the analysis of variance table for the multiple regression 
of birthweight ratio and mother’s height, sex of infant, and the parity.

Table 12.4 Analysis of variance table for multiple regression to 
predict birthweight (b Table 12.3, p. 410)

Factor DF Sum of squares Variance 
estimate

F ratio P value

Model
 height
 sex of infant
 parity

3 1.9082 0.6360 39.15 0.0001

Residual 1509 24.5152 0.0162

Total 1512 26.4234

Explanation of table
Row 2 gives the statistics for the model that was fi tted, i.e. the set • 
of variables height, sex of infant, and parity. Row 4 gives the overall 
totals. Row 3 gives the residual or unexplained part of the variation
DF is degrees of freedom; it is the • number of variables in the model 
(3)  for row 2, total number observations –1 (1512), for row 4, and the 
difference between these, 1512–3=1509, for row 3
Total sum of squares is the sum of squares of the overall mean minus • 
each observation squared. The other sums of squares cannot be 
easily calculated by hand
The model and residual sums of squares add up to the total,•  i.e. 
1.9082+24.5152=26.4234
Variance estimate is the sum of squares/DF:• 
 F ratio is ratio of 2 variances:
0.6360/0.0162 = 39.15
P value is probability associated with an F value of 39.15 if the null • 
hypothesis that the model variables collectively are unrelated to the 
outcome, BW ratio. As it is very small, we conclude that the model 
variables height, sex, and parity are related to birthweight.

Two-way analysis of variance 
The method of one-way analysis of variance (b One-way analysis of 
variance, p. 280) can be extended to allow two factors to be analysed 
together. For example, Table 12.5 shows data from a clinical trial investi-
gating the effect of different topical analgesics and different gauge needles 
on reported pain on injection.1 
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Table 12.5 Median visual analogue scale (VAS; 0–10) pain score after 
injection in 120 subjects

Treatment Needle size (gauge) All

22 20 18

EMLA 60 0.3 0.2 1.2 0.4

EMLA 5 0.4 0.5 1.1 1.0

Placebo 0.8 1.4 2.3 1.9

Nil 1.6 1.2 2.8 2.3

All 0.5 0.9 1.9

These data were analysed using two-way analysis of variance but could 
equally have been analysed using multiple regression to give the same 
answer since analysis of variance is a special case of multiple regression. 

Balanced designs
In a two-way analysis of variance, the data are said to be balanced 
if there are equal numbers of subjects for each combination of 
factors. Otherwise the design is unbalanced. In balanced designs the sums 
of squares add up and analysis of variance can be done by hand using for-
mulae. This is of no great importance nowadays since computers are so 
readily available to most people, but the issue was critical when most cal-
culations were done manually. This is why many older textbooks describe 
analysis of variance and multiple regression separately. 

Unbalanced designs 
Unbalanced data are common in medical research. This affects the way 
that analyses are done in modelling situations, such as when adding 
another variable to a particular group of variables to see if the model is 
improved. In such a situation it is necessary to do the following:

Fit the model (i) without and then (ii) with the new variable• 
Test the addition of the new variable using the • extra sum of squares 
that the new variable adds to the model
For an example of this see • b Linear and non-linear terms, p. 416.

0 Choice of method: analysis of variance or multiple 
regression
Some statistical programs will do both methods but the different com-
mands may deal with predictor variables differently. For example, in Stata 
the ‘anova’ command assumes all variables are categorical unless the user 
specifi es otherwise, whereas its ‘regression’ command assumes that all 
variables are continuous unless otherwise specifi ed. 

Reference
1 Nott MR, Peacock JL. Relief of injection pain in adults. EMLA cream for 5 minutes before 

venepuncture. Anaesthesia 1990; 45(9):772–4.
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Main effects and interactions
Introduction
The regression analyses considered so far have only included main 
effects. In other words, it was assumed that the effect of one predictor on 
an outcome was constant for all values of other predictor variables in the 
model. For example, in the birthweight study data presented earlier in the 
chapter it was assumed that the effect of maternal height on birthweight 
was the same for both males and females and also that the difference in 
mean birthweight between males and females did not vary with mother’s 
height. These assumptions were reasonable but in other situations they 
may not be so. 

Example

An ecological study investigated the inter-relationships between tooth 
decay in children, water fl uoridation, and deprivation.1 The study found 
a protective effect of both natural and artifi cial fl uoridation on tooth 
decay and an adverse effect of deprivation. But the study also reported 
an interaction such that the observed benefi t of fl uoridation was greater 
in more deprived areas than in less deprived areas. Figure 12.1 depicts 
this.
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Fig. 12.1 Mean decayed, missing, or fi lled tooth score and Jarman underprivileged 
area score, by non-fl uoridated, artifi cially fl uoridated, and naturally fl uoridated 
electoral wards.
Reproduced from BMJ Jones CM et al. 315:514–517 1997 with permission from BMJ Publishing 
Group Ltd. 
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Example (continued)

Interpretation of graph
Both artifi cial and natural fl uoridation were associated with a lower • 
ward tooth decay score than no fl uoridation
The differences in mean ward tooth decay score were small for areas • 
with low Jarman deprivation score (left hand end of the graph) and 
were much greater for areas with high deprivation scores (right hand 
end of the graph)
There is an interaction between fl uoridation and deprivation • 
such that the effects of fl uoridation are greater in areas with high 
deprivation

Notes 
When there is an interaction between two factors as there is here, • 
the regression lines are not parallel – there is a different line for each 
group
If an interaction term had not been included in the model, three • 
parallel lines would have been computed but these would not have 
represented the data very well
The statistical model used here was:• 

tooth decay = fl uoridation + deprivation + (fl uoridation x deprivation) 
Where fl uoridation is in three groups and deprivation score is • 
continuous.
The multiplicative term ‘• fl uoridation x deprivation’  is the 
interaction term

Reference
1 Jones CM, Taylor GO, Whittle JG, Evans D, Trotter DP. Water fl uoridation, tooth decay in 

5 year olds, and social deprivation measured by the Jarman score: analysis of data from British 
dental surveys. BMJ 1997; 315(7107):514–17.
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Linear and non-linear terms 
Introduction
The basic assumption of regression is that the relationship between a pre-
dictor and outcome variable is linear. If this is not true, it may be possible 
to fi nd a transformation of the variable that will give a linear relationship 
so that regression methods can be used. For example, if the relationship 
is U-shaped (quadratic), then a relationship of the following form can be 
used:

y = a + bx + cx2 

Example

The EMLA trial investigated whether using EMLA anaesthetic cream for 
just 5 minutes before injection was better than using nothing1 (b Table 
12.5, p. 413 has the summary data). The trial included four treatment 
groups: EMLA 60 applied 60 minutes before injection (known to be 
effective), EMLA 5 minutes before injection, placebo cream 5 minutes 
before injection, and nothing. Pain was assessed using a 10 cm VAS. The 
data were analysed fi rstly using two-way analysis of variance and then 
using a multiple regression model to adjust for the effect of the age of 
the patient. Age did not have a linear relationship with pain; reported 
pain was highest for the youngest and oldest people and lowest for 
those in between so the relationship was U-shaped. To model this, the 
factors age and age2 were put into the multiple regression model. 

Table 12.6 Analysis of variance table for multiple regression in 
EMLA trial

Factor DF Sum of 
squares

Variance 
estimate

F ratio P value

Age + age2 2  7.49 3.75  4.40   0.01

Needle size 2  19.39 9.70 11.39 <0.0001

Treatments 3  23.95 7.98  9.38 <0.0001

Residual 112  95.36 0.85

Total 119 146.19

Interpretation
1. The quadratic term ‘age + age2’:

Has 2 DF as there were two continuous factors• 
It is statistically signifi cant• 
The sum of squares (SS) is the same as we get if we had included only • 
the ‘age’ term in the multiple regression model, and not needle size 
or treatment



417LINEAR AND NON-LINEAR TERMS 

Example (continued)

2. The ‘needles’ term:
Has 3–1=2 DF as there were three types of needle• 
SS is the extra SS due to ‘needles’ after including ‘age’• 
It is statistically signifi cant• 

3. The ‘treatments’ term:
Has 4–1=3 DF as there were four different treatments• 
SS is the extra SS due to ‘treatments’ after including age and needles• 
It is statistically signifi cant• 

Conclusion
The two-way analysis of variance had shown that EMLA applied 5 
minutes before injection reduced pain slightly compared to placebo 
cream or nothing. The multiple regression analysis showed that the 
treatment effect remained statistically signifi cant after allowing for the 
age of the subject and the gauge of the needle used. It was concluded 
that the observed treatment differences were not due to other factors.

Notes
Since pain score was skewed and there were some zero values, the • 
outcome was transformed for analysis by taking log(pain score + 1)
When modelling the quadratic relationship for age, the mean age • 
was subtracted from the age in each term to reduce the correlation 
between the age and age squared terms, i.e. the following was used:
(x−x–) + (x−x–)2  (see Bland, Chapter 172)

Tests of fi t using extra sum of squares
In the example we examined the effect of treatment after allowing for 
needles and age. If the question of interest was to see if adding ‘age’ to the 
model improved the fi t, a different approach is used:

Fit a model with just needles and treatments• 
Fit a second model adding in ‘age’ as a quadratic term• 
Subtract the two model sums of squares, and test statistical signifi cance  • 
of the difference using an F test

In the example above this gives model SS without age is 42.47, DF=5 and 
model SS with age is 50.83, DF=7. The difference is the extra SS: 50.83 – 
42.47 = 8.36 with DF= 7–5=2. The F test is given by (8.36/2)/residual mean 
square, 4.18/0.85 = 4.92, DF = 2,112. This gives P=0.009. 

The F test for the extra SS is equivalent to a t test of the regression • 
coeffi cient for a continuous predictor variable
The above two ways of testing the effect of ‘age’ are very similar here. • 
This may not always be so

References
1 Nott MR, Peacock JL. Relief of injection pain in adults. EMLA cream for 5 minutes before 

venepuncture. Anaesthesia 1990; 45(9):772–4.
2 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
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How well the model fi ts
How well a multiple regression model fi ts the data
We can assess how well a multiple regression model fi ts the data by con-
sidering the proportion of the total variability, the total sum of squares, 
that is accounted for or ‘explained’ by the model that was fi tted. For 
example in the birthweight, height, sex, and parity model, the total sum of 
squares was 26.423 and the model sum of squares was 1.908. Therefore, 
the model explained 1.908/26.423 = 0.072 or 7.2% of the variation in birth-
weight ratio. This means that over 90% of the total variability was not 
accounted for by these factors. This may be because the wrong factors 
had been measured or included in the model, or because there was 
unknown variation which cannot be quantifi ed. (The latter is certainly true 
with birthweight.) 

R-squared (R2) 
The proportion of variability explained is known as R-squared (R2) and 
is analogous to the square of the correlation coeffi cient for simple linear 
regression. R is known as the multiple correlation coeffi cient. 

Note that • R2 always increases when additional variables are added 
to the model even if the additional variable is not statistically signifi cant. 
Some statistical programs calculate an adjusted R2 which takes 
account of chance prediction to address this potential problem 
The basic assumptions of the multiple regression model, linearity, and • 
Normal residuals (b Simple regression, p. 296) should be tested. If 
these are not met, then the model fi t will be poorer and so estimates 
and tests may be unreliable 

Deviance for generalized linear models
Deviance is a general measure of how well a generalized linear model 
fi ts a set of data (b Generalized linear models, p. 404). It is analogous 
to the R-squared statistic for multiple regression described above. The 
deviance follows an approximately chi-squared distribution with degrees 
of freedom equal to the difference in the number of parameters fi tted 
by two models. Analysis of deviance is used to determine the best-fi tting 
model, and in particular to determine if the inclusion of extra variables in 
a model signifi cantly improves the fi t. This is analogous to using the ‘extra 
sum of squares’ method to test the addition of new variables in multiple 
regression (b Linear and non-linear terms, p. 416). Deviance is used to 
test model fi t in logistic regression, Cox regression, Poisson regression, 
and in other generalized linear models.

What is a good fi t?
This depends on the purpose of the study and analysis:

If this is to derive an equation from which predictions will be made, it • 
is important that the model fi ts closely since a large residual error will 
lead to wide confi dence intervals and poor precision
If this is to investigate relationships and test hypotheses, high precision • 
is less critical and so it may not matter if the proportion of variability 
explained is low as long as all known confounding variables are 
included
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Sample size for multiple regression
Introduction
There is no simple way to determine the size of sample required for a 
multiple regression analysis but the following points may be helpful.

Number of predictor variables
If a large number of predictor variables are tested then we expect that • 
some will be signifi cant by chance alone
When a large number of variables are fi tted to a small dataset, it may • 
appear that the fi t is very good. Exact prediction can be obtained 
where the number of factors is one fewer than the total sample size 
but clearly this would be nonsensical
For an existing dataset with • n observations, Altman, Chapter 12,1 
suggests as a guide that no more than n/10 predictor variables should 
be included at a time 

Number of observations
If the number of observations is large then some very small effects that • 
may not be of practical importance will be statistically signifi cant
If sample size calculations are based on unifactorial analyses, then a • 
useful rule of thumb is to increase the sample size by 10% for each 
predictor variable that is to be analysed

Further reading on multiple regression
Bland, Chapter 17,• 2  Altman, Chapter 12,1 and Kirkwood and Sterne, 
Chapters 11 and 123 give more examples and discussion of multiple 
regression
Peacock and Kerry, Chapter 10,• 4 show how to carry out multiple 
regression in SPSS and Stata and also gives examples of how to present 
the fi ndings in a report or paper

References
1 Altman DG. Practical statistics for medical research. London: Chapman & Hall, 1991.
2 Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press, 2000.
3 Kirkwood BR, Sterne JAC. Essential medical statistics. 2nd ed. Malden, MA: Blackwell Science, 

2003.
4 Peacock J, Kerry SM. Presenting medical statistics from proposal to publication. Oxford: Oxford 

University Press, 2006.
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Logistic regression
Details of logistic regression

It is used for a binary outcome variable, such as survive yes/no, diseased • 
yes/no, symptom yes/no, satisfi ed yes/no
It enables us to disentangle the effects of several predictor variables on • 
a binary outcome, either to test hypotheses about predictive factors or 
to produce a predictive model
Predictor variables can be any mixture of continuous, binary, or • 
categorical data
It uses a logarithmic transformation to allow a linear relationship to be • 
modelled
It gives a set of regression coeffi cients that represent the relationship • 
between each predictor variable and the binary outcome, after 
adjusting for all the other variables in the model
It fi ts a model of the form:• 
loge[p/(1–p)] = b0 + b1x1 + b2x2 + b3x3 + b4x4 + …

where:
p•  is the proportion with the outcome 
x• 1, x2 … are the predictor variables
b• 0  is the intercept and b1, b2, b3, etc. are the regression coeffi cients 
(estimates) for the variables x1, x2, x3, etc., which when back-
transformed from the log scale to the natural scale are odds ratios
log• e[p/(1–p)]  is known as the logit transformation

Approach to the analysis
1. Consider which predictor variables may be important in advance
2. Investigate the relationship between each of these and the binary 

outcome separately before doing the logistic regression to guide both 
the analysis and the interpretation:

Binary predictor variables:•  calculate the proportions of the outcome 
in each group, e.g. if the outcome is die/survive and the predictor 
variable is sex, calculate the proportion surviving in males and 
females and compare.
Categorical predictor variables: • calculate the proportions of 
the outcome in each category, e.g. with die/survive and hospital, 
calculate the proportion surviving in each hospital and compare.
Continuous predictor variables: • divide the variable into categories 
and calculate the proportion of the outcome in each category, e.g. if 
the continuous variable is age, divide into age groups and calculate 
and compare the proportion surviving in each age category. It is not 
necessary to use the grouped variable in the logistic regression if 
the relationship with the raw data is approximately linear. In general 
it is better to analyse the raw data as continuous data rather than 
grouped data where possible to retain as much information as 
possible (b Outcomes: continuous and categorical, p. 46)

3. Choose the modelling approach to be used (b Multifactorial 
methods: model selection, p. 398)
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Tests and estimates
If there is no relationship between y and xi after adjusting for the other xs, 
then bi will be zero on the logarithmic scale. When the bi  are back-trans-
formed to give odds ratios, the null value equivalent to a log of zero is 1, 
i.e. the null value for the odds ratio is 1. The interpretation of the coef-
fi cients depends on whether the predictor variable is continuous, binary, 
or categorical. The precise meanings are given below.

Interpreting the odds ratios (OR) from logistic regression
OR measures the strength of relationship and is the ratio of odds in • 
two groups
OR=1 indicates no relationship• 
OR<1 indicates a protective relationship• 
OR>1 indicates an adverse relationship• 
Note, in general ORs cannot be interpreted as relative risks unless • 
the outcome is rare (b Estimates for tests of proportions, p. 268)

Binary predictor variable:•  OR is the odds of the outcome in one 
group divided by the odds in the other group 
Categorical predictor variable with n categories: • gives n–1 ORs 
where each is the odds of the outcome in a particular category 
versus the odds in the reference category (see Dummy variables 
for more details on how this works, b Multifactorial methods: 
overview, p. 396)
Continuous predictor variable:•  OR is the change in odds of the 
outcome for a unit change in the continuous predictor variable. 
A change of two units has an associated OR that is OR x OR=OR2 
(not 2 x OR), and a change of three units is shown by OR3 etc.

Assumptions
The principal assumption is that the relationship between the outcome 
and the predictor variable is linear on the logit scale for continuous pre-
dictor variables. This can be tested by categorizing the continuous variable 
and plotting the logit of the proportion with the outcome in each group 
to check this is close to a straight line relationship.  

Sample size is an important issue for logistic regression. This is discussed 
in b Extensions to logistic regression, p. 426.
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Logistic regression: examples
Using logistic regression to adjust for confounding

A prospective study obtained reports of symptoms and health prob-
lems during pregnancy and sought to explore their inter-relationships 
with social and behavioural factors. Preliminary analyses had shown that 
both women who smoked and women in manual occupations reported 
less nausea. Logistic regression was used to disentangle the relationships 
(Table 12.7)1 

Table 12.7 The relationships between smoking, occupation and 
nausea in 1512 pregnant women

Predictor variable Odds ratio 95% CI P value

Smoking <0.001

Non-smoker 1.00

Light smoker 0.59 0.44 to 0.79

Heavy smoker 0.51 0.35 to 0.75

Occupation  0.04

Non-manual work 1.00

Manual work 0.74 0.55 to 0.99

Interpretation
The reference category for smoking was non-smokers and for • 
occupation was non-manual work, and each has OR=1
ORs for both light smokers and heavy smokers are <1, indicating • 
that smokers have a lower odds of nausea than non-smokers, after 
adjusting for occupation 
The OR for manual work is also <1, indicating that women in manual • 
occupations have a lower odds of nausea than those in non-manual 
occupations, after adjusting for smoking
Both the smoking factor and occupation factor are statistically • 
signifi cant overall
These data are consistent with there being independent relationships • 
between smoking and nausea, and occupation and nausea 

0 Note
This analysis shows that the risk of nausea was lower in smokers than 
non-smokers. However, this cannot be interpreted as a causal relation-
ship since the study was observational. It could be that women who 
felt nauseated in early pregnancy or in previous pregnancies, gave up 
smoking. Hence the effect might be due to selection and not cause.
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Calculating probabilities
The logistic regression equation (not given explicitly opposite) can be 
used to calculate odds or probabilities for specifi c combinations of pre-
dictor variables, i.e. for specifi c individuals. The following shows the 
calculations for the nausea data in Table 12.7.

Equation for logit(p) from logistic regression is given by:
1.6232 – 0.5292 x smoker1 – 0.6744 x smoker2 – 0.3013 x occup

Where 
smoker1• =1 indicates a light smoker
smoker2• =1 indicates a heavy smoker
smoker1• =smoker2=0 indicates a non-smoker
occup• =0 indicates non-manual occupation
occup• =1 indicates manual occupation

To calculate the probability of nausea, using the model, for a non-
smoker in a non-manual occupation:

Calculate log odds using the equation by substituting the correct • 
values for smoking and occupation
Calculate the antilog to get the odds• 
Convert the odds to a probability using standard formula:• 
probability=odds/(1+odds)

This gives:
1.6232 – 0.5292 • x smoker1 – 0.6744 x smoker2 – 0.3013 x occup 
1.6232 – 0.5292 x 0  – 0.6744 x 0 – 0.3013 x 0 = 1.6232
exp(1.6232) • = 5.0693
Probability = 5.0693/(1+5.0693) = 0.835 or 84%• 

Note that the exponential (i.e. antilog) of the coeffi cients on the log 
scale gives the odds ratios shown in Table 12.7: i.e. exp(–0.5292)= 0.59, 
exp(–0.6744)=0.51, exp(–0.3013)= 0.74

Reference
1 Meyer LC, Peacock JL, Bland JM, Anderson HR. Symptoms and health problems in pregnancy: 

their association with social factors, smoking, alcohol, caffeine and attitude to pregnancy. 
Paediatr Perinat Epidemiol 1994; 8(2):145–55.
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Logistic regression and ROC curves
ROCs and sensitivity and specifi city
These are used to display possible cut-offs for sensitivity and specifi city 
to detect a condition using a diagnostic test, where the test gives a con-
tinuous measure (b Receiver operating characteristic (ROC) curves, 
p. 348). They can be obtained using logistic regression with the condition 
as the outcome and the continuous diagnostic measure as the predictor. 

ROCs and prediction
ROCs can also be used in a more general way to quantify the extent to 
which a statistical model predicts a binary outcome. Since the maximum 
area under the curve is 1, a model with area under the curve close to 
1 fi ts the data better than a model with area under the curve much less 
than 1.  The example in Table 12.8 has used the area under the ROC 
curve in exploring the effects of baby factors, treatments, and clinical 
outcomes on bronchopulmonary dysplasia (BPD, yes/no).

Example using ROCs

Table 12.8 Logistic regression models (A,B,C,D) to predict 
bronchopulmonary dysplasia

Factor OR Area under ROC 
curve

(A) Baby factors 0.94

Birthweight (g) 0.996

Gestational age (d) 0.924

(B) Surfactant treatment 0.83

None 1.0

1 dose 11.9

2 doses 84.5

(C) Clinical outcomes 0.94

ETCO 14d (log scale) 570.0

FRC 14 d (log scale) 0.320

(D) Combined model 
(A+B+C)

0.97

Birthweight (g) 0.994

Gestational age (d) 0.989

ETCO 14 d 83.2

Note: 95% CIs and P values have been omitted here to simplify

ETCO, exhaled carbon monoxide; FRC, forced residual capacity; ROC, receiver operating 
characteristic.
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Example using ROCs (continued)

Methods and interpretation
Four logistic regressions were done, one for each of the three types • 
of variable, and a fi nal model that combined these three
For each model, several predictive factors were analysed with BPD • 
and used in the model if this gave a signifi cant result
For each model an area under the ROC curve was reported to • 
indicate the predictive power of the variables included
The interpretation of the ORs is straightforward for the surfactant • 
doses but is less so for the continuous variables. We illustrate this 
using birthweight, where the OR is 0.996:
l  The comparative odds of BPD in two infants whose weight differs 

by 1 g is 0.996
l  The comparative odds of BPD in two infants whose weight differs 

by 10 g is 0.99610= 0.961
l  The comparative odds of BPD in two infants whose weight differs 

by 100 g is 0.996100=0.670

Conclusions
These data suggest:

Birthweight and gestation combined, are powerful predictors of BPD • 
with area under the curve = 0.94
14-day measures of ETCO (exhaled carbon monoxide) and FRC • 
(forced residual capacity) combined are also are strong predictors of 
BPD with area under the curve = 0.94
When these models are combined a slightly higher area under • 
the curve was given with birthweight, gestation, and ETCO (0.97) 
suggesting that ETCO improves the prediction slightly 

These data come from a clinical study in infants born very prematurely, 
unpublished at the time of writing (C May, 2010).
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Extensions to logistic regression
Interaction terms and non-linear relationships
These can be included, if appropriate, in similar ways to multiple regres-
sion (b Linear and non-linear terms, p. 416).

Ordinal logistic regression
Bronchopulmonary dysplasia (BPD) is sometimes analysed as a 
binary variable but can also be categorized in four groups according 
to the severity of BPD: no BPD, mild, moderate, and severe BPD.
This gives an outcome that consists of four groups with an inherent 
ordering. These data can be analysed using an extension of logistic regres-
sion called ordinal logistic regression. The results of ordinal logistic regres-
sion are in the form of odds ratios but the meaning is slightly different due 
to the ordering and the way the model is fi tted. The following example 
illustrates.

Example

These data come from a study investigating the relationship between 
bacteria obtained from endotracheal aspirates and the subsequent 
severity of BPD in infants born preterm.1 BPD severity was analysed 
in four groups as: (i) no BPD, (ii) mild BPD, (iii) moderate or severe 
BPD, and (iv) death. A positive relationship was observed between BPD 
severity and the presence of Ureaplasma, and between the number 
of days the infant was ventilated and the presence of Ureaplasma. An 
ordinal logistic regression was used to disentangle the relationships to 
see if the relationship with Ureaplasma could be due to infected infants 
being ventilated for longer. The following results were obtained:

Before adjustment the odds ratio for BPD or death where • 
Ureaplasma was present/absent was 4.80 (95% CI: 1.15 to 20.13) 
After adjusting for number of days ventilated, the odds ratio was • 
reduced to 2.04 (95% CI: 0.41 to 10.25) and was no longer statistically 
signifi cant
It was concluded that the relationship between • Ureaplasma and 
severity of BPD is partly explained by the length of ventilation either 
directly or as a proxy for how sick the infant was at the outset 

Polytomous logistic regression
The method of ordinal logistic regression can be extended to deal with 
a multi-category outcome without ordering. For further details see 
Collett.2
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Conditional logistic regression
Conditional logistic regression is an extension of the paired test of two 
proportions, McNemar’s test (b McNemar’s test for paired proportions, 
p. 276). The analysis gives adjusted odds ratios for paired binary data, such 
as may be found in a matched case–control study. For further details, see 
Collett.2

0 Sample size considerations
Logistic regression is a large sample method and so the results will not 
hold if the sample size is too small. Peduzzi et al.1 performed simulations 
which indicated that the total number of events is the key factor 
rather than the total sample size. This means that the number of deaths 
or survivors, whichever is smaller, must be large enough. The researchers 
recommend that a sample should contain at least 10 events (as defi ned 
above) per variable used in a logistic equation. Their study showed that 
where the number of events was too small, the estimates tended to be 
biased either upwards or downwards, i.e. they were either too big or too 
small. This occurs because the estimation methods are unstable when the 
sample size is too small. 

For example, in the study of nausea in pregnancy (b Table 12.7, 
p. 422), the total number of nausea events was 1199 but the number 
without nausea was 313. It is this number that drives the sample size 
considerations and so with this number, around 30 variables could be 
safely modelled at one time. 

Further reading on logistic regression
For more examples, see Bland, Chapter 17,• 4 Altman, Chapter 12,5 and 
Armitage et al., Chapter 146

For full details and a more mathematical coverage, see Collett’s book, • 
Modeling binary data’2

References
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Cox proportional hazards regression
Details of Cox regression

This is used for a time-to-event outcome variable, such as the length of • 
survival from diagnosis, the time to recurrence after treatment, time to 
conception after fertility treatment, and so on
It enables us to disentangle the effects of several predictor variables on • 
a time-to-event outcome either to test hypotheses about predictive 
factors or to produce a predictive model
Predictor variables can be any mixture of continuous, binary, or • 
categorical data
It uses a logarithmic transformation to allow a linear relationship to be • 
modelled
It gives a set of regression coeffi cients that represent the relationship • 
between each predictor variable and the time-to-event outcome, after 
adjusting for all the other variables in the model
It fi ts a model of the form:• 
loge [h(t)/h0(t)] = b1x1+ b2x2 +…+ bpxp

where:
h(t)•  is the probability of the outcome at time t – the ‘hazard’
h• 0(t) is the probability of the outcome at time 0, ie the baseline hazard
h(t)/h• 0(t) is the hazard ratio which is log-transformed for analysis
x• 1, x2 … are the predictor variables
b• 1, b2, b3, etc. are the regression coeffi cients (estimates) for the variables 
x1, x2, x3, etc. which when back-transformed are hazard ratios 

Approach to the analysis
1. Consider which predictor variables may be important in advance
2. Investigate the relationship between each of these and the time-to-

event outcome separately before doing the Cox regression to guide 
both the analysis and the interpretation:

Binary predictor variables:•  plot the Kaplan–Meier survival curve 
(b Kaplan–Meier curves, p. 320) for each group and calculate 
hazard ratios, e.g. if the outcome is time to death and the predictor 
variable is sex, plot survival for males and females, and calculate the 
hazard ratio for males/females
Categorical predictor variables:•  plot the Kaplan–Meier survival 
curve for each category and calculate hazard ratios relative to the 
chosen reference category to show the relationships
Continuous predictor variables: • divide the variable into categories 
and proceed as for categorical variables above

3. Choose the modelling approach to be used (b Multifactorial 
methods: model selection, p. 398)

Tests and estimates
If there is no relationship between y and xi after adjusting for the 
other xs, then bi will be zero on the logarithmic scale. When the bi  are 
back-transformed to give hazard ratios, the null value equivalent to a log 
of zero is 1, i.e. the null value for the hazard ratio is 1. The interpretation 
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of the coeffi cients depends on whether the predictor variable is contin-
uous, binary, or categorical. The precise meanings are given below.

Interpreting the hazard ratios (HR) from Cox regression
HR measures the strength of relationship and is the ratio of hazards • 
or risks of outcome in two groups
HR=1 indicates no relationship• 
HR<1 indicates a protective relationship• 
HR>1 indicates an adverse relationship• 
Note that a HR is ratio of risks similar to a • relative risk

Binary predictor variable: • HR is the risk of the outcome in one 
group divided by the risk in the other group 
Categorical predictor variable with n categories: • gives n–1 HRs, 
where each is the risk of the outcome in a particular category versus 
the risk in the reference category (see Dummy variables for more 
details on how this works, b Multifactorial methods: overview, 
p. 396)
Continuous predictor variable:•  HR is the change in risk of the 
outcome for a unit change in the continuous predictor variable. 
A change of two units has an associated HR, that is HR x HR=HR2 
(not 2 x HR), and a change of three units is shown by HR3 etc.

Assumptions
The Cox regression method assumes that the hazard ratio is constant 
across time. This can be checked by calculating the hazard ratio for sub-
jects entering the study at different times, plus there are statistical tests 
that can be done on the regression residuals (details omitted, see Collett1). 
If this assumption of constancy over time does not hold, the predictor 
variables are said to be time-varying and the Cox model approach needs 
to be adapted and extended to allow for this.1 

Footnote
Cox regression was fi rst introduced by Sir David Cox, of Imperial College, 
London, relatively recently in statistical history in 1972. The paper pub-
lished in the Journal of the Royal Statistical Society has unsurprisingly been 
cited over 20 000 times!2 

References
1 Collett D. Modelling survival data in medical research. 2nd ed. Boca Raton: Chapman & Hall/

CRC, 2003.
2 Cox DR. Regression models and life-tables. J R Statist Soc B 1972; 

34(2):187–220.
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Cox regression: example
Cox regression to disentangle effects of several factors

This study used data from a newly established cancer registry in 
Southern Iran to investigate survival in women with breast cancer. Table 
12.9 shows analyses of effects of distant metastases. Three types of 
metastasis were statistically signifi cant on their own and so they were 
modelled together using Cox regression1, giving the following results.

Table 12.9a Cox regression for factors associated with breast cancer 
survival: interim model

Factors Hazard ratio (95% CI) P value

Bone metastases 2.20 (1.41 to 3.45) 0.001

Liver metastases 1.86 (0.90 to 3.84) 0.093

Lung metastases 2.49 (1.20 to 5.13) 0.014

Interpretation
Bone and lung metastases were both statistically signifi cant but liver • 
was not (Table 12.9a)
The model was re-fi tted without the factor ‘liver’ (Table 12.9b)• 

Table 12.9b Cox regression for factors associated with breast cancer 
survival: fi nal model

Factors Hazard ratio (95% CI) P value

Bone metastases 2.25 (1.43 to 3.52) <0.001

Lung metastases 3.21 (1.70 to 6.05) <0.001

Interpretation
The hazard ratios for bone and lung metastases increased slightly in • 
the second model
For bone metastases, HR=2.25 indicates that there is a 2.25-fold • 
increase in risk of death for those with bone metastases compared 
with those without bone metastases
The 95% confi dence interval shows that the true hazard ratio could • 
be as great as 3.52 or as small as 1.43
The hazard ratio for lung metastases is interpreted in a similar way • 

Note: the Cox regression method assumes that the hazard ratio is con-
stant across time. Here this means that women who entered the study 
early had the same hazard ratios as women who entered the study later. 
The data were checked to confi rm this was true.



431COX REGRESSION: EXAMPLE

Sample size considerations
As with logistic regression, Cox regression is a large sample method and 
the sample size needs to be big enough for the analysis to be valid. Peduzzi 
et al.2 performed simulations which indicated that, for Cox regression as 
for logistic regression, the total number of events is the key factor 
rather than the total sample size. Hence the number of deaths or survivors, 
whichever is smaller, needs to large enough. The researchers recom-
mended that a sample should contain at least 10 events (as defi ned 
above) per variable used in a Cox regression equation. 

Further reading on Cox regression and its extensions
Further examples and discussion can be found in Bland, Chapter 17,• 3 
Altman, Chapter 13,4 Kirkwood and Sterne, Chapter 27,5 and Armitage 
et al., Chapter 176

For full details and a more mathematical coverage, see Collett’s book • 
Modelling survival data in medical research7
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Poisson regression
Details of Poisson regression
Poisson regression is commonly used to analyse data from epidemiological 
studies such as large occupational cohorts:

It is used to analyse the number of events as the outcome variable • 
where this can be expressed as a rate. For example, the annual rate of 
infl uenza infection in a population, or the rate of myocardial infarction 
in smokers per 1000 person-years followed up.
It enables us to disentangle the effects of several predictor variables • 
on a rate, to test hypotheses about predictor factors, or to produce a 
predictive model
Predictor variables can be any mixture of continuous, binary, or • 
categorical data
It uses a logarithmic transformation to allow a linear relationship to be • 
modelled
It gives a set of regression coeffi cients that represent the relationship • 
between each predictor variable and the rate outcome, after adjusting 
for all the other variables in the model
It fi ts a model of the form:• 
loge (rate) = b0 +  b1x1+ b2x2 + . . . + bpxp

where:
rate is the number of events divided by the population at risk multiplied • 
by the exposure time. For example ‘person years at risk’ 
b• 0 is the baseline rate
b• 1, b2, b3,  etc. are the regression coeffi cients that estimate the variables 
x1, x2, x3, etc. and when back-transformed are rate ratios 
x• 1, x2 ... are the predictor variables

Approach to the analysis
This is the same as the general approach for logistic regression 
(b Logistic regression, p. 420) and Cox regression (b Cox proportional 
hazards regression, p. 428).

Tests and estimates
If there is no relationship between the rate and xi after adjusting for the 
other xs, then bi will be zero on the logarithmic scale. When the bi  are 
back-transformed to give rate ratios, the null value equivalent to a log of 
zero is 1, i.e. the null value for the hazard ratio is 1. The interpretation of 
the coeffi cients depends on whether the predictor variable is continuous, 
binary, or categorical. The precise meanings are given below.
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Interpreting the rate ratios (RR) from Poisson regression
RR measures the strength of relationship and is the ratio of rates in • 
two groups
RR=1 indicates no relationship• 
RR<1 indicates a protective relationship• 
RR>1 indicates an adverse relationship• 

Binary predictor variable:•  RR is the rate in one group divided by 
the rate in the other group 
Categorical predictor variable with • n categories: gives n–1 RRs 
where each is the rate in a particular category versus the rate in the 
reference category (see Dummy variables for more details on how 
this works, b Multifactorial methods: overview, p. 396)
Continuous predictor variable:•  RR is the change in rate for a unit 
change in the continuous predictor variable. A change of two units 
has an associated RR that is RR x RR=RR2 (not 2 x RR), and a change 
of three units is shown by RR3 etc.

Assumptions
The method assumes that the number of events follows a Poisson • 
distribution. A quick check for this is that the mean and variance are 
similar as would be expected for a Poisson distribution (b Poisson 
distribution, p. 216). If the variance is too big, there is said to be ‘over-
dispersion’. This can often be caused by the omission of important 
predictor variables and so adding more variables may correct the 
problem. If not, another type of regression may be needed, such as 
negative Binomial regression (details omitted).
Rates are often calculated over a time period, and Poisson regression • 
assumes that the rate is constant over time. For example, if age is a 
predictor variable in a Poisson regression then the assumption would 
be that the rate is the same for all ages. This may not be appropriate 
and so it may be necessary in the given example to divide age into 
categories in which the rate is approximately constant, and calculate 
the rate ratio for each age category 

Link between Poisson and Cox regression
If  the rate changes with time, as with age in the example above, and the 
age categories are made smaller and smaller until each age has its own 
category, the results of Poisson regression will be the same as using Cox 
regression.
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Poisson regression: example
Using Poisson regression with cohort study data 

A national cohort study assessed the risk of venous thromboembolism 
in women using hormonal contraception (HC) in Danish women aged 
15–49 with no history of cardiovascular or malignant disease. Poisson 
regression was used to estimate rate ratios for venous thrombotic 
events allowing for the length of time of HC use, age, educational level 
and, calendar year. Table 12.10 gives an extract of the results.

Table 12.10 Crude incidence rates and adjusted rate ratios of venous 
thromboembolism in women according to use of the combined pill

Years of combined pill use <1 year 1–4 years >4 years

Woman years 684 061 1 449 000 1 031 953

No. with venous thromboembolism 443 787 793

Rate per 10 000 woman years 6.48 5.43 7.68

Adjusted rate ratio 4.17 2.98 2.76

95% CI 3.73 to 4.66 2.73 to 3.26 2.53 to 3.02

Notes: Rates are adjusted for age, calendar year, educational level; Reference category is non-
combined pill users.

Interpretation
Columns 2–4 give results for women who used the combined pill for • 
<1, 1–4, and >4 years
Row 2, ‘woman years’, is the sum of the number of years’ use for all • 
women and measures the total exposure to the three combined pill 
categories
Row 3 is self-explanatory• 
Rate per 10 000 years is the number with venous embolisms/woman • 
years
The adjusted rate ratio comes from Poisson regression. The rate • 
ratios decrease as use increases showing an inverse relationship 
between length of use and risk
The rate ratios are interpreted directly, for example the RR of • 
4.17 indicates an approximately four-fold increased risk of venous 
embolism in combined pill users for less than1 year, compared with 
non-users
The 95% confi dence intervals all exclude the null value, 1, indicating • 
that all rate ratios are statistically signifi cant

Conclusions relevant to this extract
The authors concluded that the risk of venous thrombosis in current • 
users of the combined oral contraceptives decreased with duration 
of use
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Further details of Poisson regression
For more examples see Kirkwood and Sterne, Chapter 24,1 and Armitage 
et al., Chapter 14.2
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Multilevel models
Introduction
Multilevel models are multifactorial regression models in which the data 
are in different layers or levels. Each level includes a set of units, such 
as measurements in individuals, or schools within regions, or children 
within classes. The consequence of this is that the total variability in the 
outcome is affected by each of the levels separately. In other words, 
the total variability can be partitioned into a component for each level. 
There are various types of multilevel model to suit different situations but 
they all take the layered structure of the data into account. Examples are 
given below.

Serial lung function measurements on a sample of patients with chronic 
obstructive pulmonary disease (COPD):

Level 1: the lung function serial measurements within each patient• 
Level 2: the patients• 

Cluster randomized trial of guidelines for treatment of back pain in 
primary care, randomized by general practice:

Level 1: the patients within each practice • 
Level 2: the cluster, i.e. the general practice• 

Dental health of school children in different UK regions:
Level 1:  the children in each school• 
Level 2: the schools in different regions• 
Level 3: the different UK regions• 

Fixed and random effects
The predictor variables in a multilevel model can either have fi xed or 
random effects.

Fixed effects•  are factors where the categories of the factor have 
specifi c values which do not vary, such as sex, male/female. With fi xed 
effects, the interest is usually in the factor itself, such as the difference 
between males and females in some measurements.
Random effects•  are factors where the categories of the factor are 
simply a sample of all possible categories that might occur, such as 
general practices in a cluster trial, where the interest  is not in specifi c 
practices, but in how the intervention works across different practice 
settings. Patients are often regarded as random effects if the main 
interest is in the population from whom they are sampled, i.e. the 
average effect rather than individual patient effects. 
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Random effects (mixed) models
A random effects model fi ts a multilevel data structure by explicitly 
allowing for variability at each level. These types of models are referred to 
by several different names (see below) but are essentially equivalent.

Different names given to the same multilevel models
Random effects model• 
Mixed model• 
Multilevel model• 
Hierarchical model• 

Choice of outcomes
These models can be used with different types of outcomes, such as con-
tinuous, binary or time-to-event data, and since they can fi t with standard 
statistical programs, they are more and more commonly seen in medical 
research. 

Choice of predictor variables
The models can include a mixture of predictor variables that vary at the 
different levels. For example, if the data are repeated measurements on 
a sample of individuals in clusters, then the repeated measurements on 
each individual are level 1, characteristics of the individuals are also level 1, 
and characteristics of the cluster are level 2. Predictor variables can be 
continuous, binary, or categorical, as with other multifactorial regression 
models.

Sources of variability
The degree of variability is determined by the data structure, i.e. the 
number of levels. For example, if there are two levels: patients (level 1) 
within clusters (level 2), then the variability at each level will be as 
follows:

Level 1, individuals: variability is due to variability between individuals in • 
each cluster and between clusters 
Level 2, cluster: variability is due to variability between the clusters• 

Random effects models correctly calculate the variability due to the 
different factors at different levels. If the data were analysed without 
taking the data structure into account, the calculated estimates of vari-
ability would be too small, and so estimates and statistical tests would be 
incorrect. 

Interpretation of estimates 
In general, the interpretation of estimates given by these models parallels 
that of the ordinary single-level models described earlier in this chapter, in 
that the meaning of the regression coeffi cients is similar and depends on 
the nature of the outcome.
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Generalized estimating equations 
(GEEs)
Introduction
Multilevel regression models estimate the model parameters by explic-
itly estimating the correlations structure from the data itself. While this 
approach works well in many situations, there can be problems where 
the data are sparse for some of the levels and this leads to imprecise 
estimates. An alternative approach was developed by Zeger and Liang,1  
in which the correlation structure of the data is specifi ed by the analyst 
at the outset, and the model iterates towards a stable set of estimates 
for the parameters. This approach is known as generalized estimating 
equations or GEEs for short. 

How GEEs work
When the dataset is reasonably large, the specifi ed correlation structure 
for the data does not have to be exact because the method gives correct 
overall estimates. The correlation structure can often be given as one of 
the following:

Independent:•  where it is assumed that repeated observations on a 
subject are unrelated to each other
Exchangeable:•  where any pair of observations in the same subject have 
the same correlation as any other pair of observations in the same 
subject
Autoregressive:•  where observations that are adjacent in time have the 
correlation r and observations that are two time units apart have the 
correlation r2, etc.

GEEs have been used extensively to model longitudinal data, that is 
repeated measurements on a sample of individuals. 

Choice of outcomes and predictor variables
These can be any data type as with multilevel models but the interpreta-
tion of the coeffi cients is different from that for multilevel models in some 
situations as described below.

Estimates and their interpretation of coeffi cients in GEEs
Continuous outcome:•  gives same estimates and interpretation as 
multilevel models 
Binary outcome:•  gives different estimates to multilevel models 
because GEE provides ‘population average’ or ‘marginal 
estimates’. These estimates refer to average effects for a 
population and not the effects for a particular individual and 
therefore the estimate is different for binary outcomes. 
Poisson outcomes:•  as for binary outcome



439GENERALIZED ESTIMATING EQUATIONS (GEEs)

0 Missing data 
Multilevel models assume that any missing data is ‘• missing at random’ 
(MAR) (see b Missing data, p. 402)
GEEs assume that data are ‘• missing completely at random’ (MCAR) 
(see b Missing data, p. 402)
It may not be easy to determine if the MCAR requirement is true • 
and so GEEs may give unreliable estimates when there is a substantial 
amount of missing data. In such situations, it may be better to use a 
multilevel model

Reference
1 Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation 

approach. Biometrics 1988; 44(4):1049–60.
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GEEs: example
Longitudinal lung function measurements in preterm babies

A clinical study in very preterm babies investigated the relationship 
between exhaled nitric oxide (eNO)  level up to 28 days after birth, 
and bronchopulmonary dysplasia (BPD) in four groups and as a binary 
variable.1 GEEs with exchangeable correlation structure were used to 
model the relationship. Table 12.11 shows some of the results.

Table 12.11 GEE analysis of the change in exhaled nitric oxide 
level over time in four bronchopulmonary dysplasia (BPD) groups 
(model 1) and in two groups (model 2)

Coeffi cient SE Overall P value

MODEL 1

No BPD Reference 0.30

Mild 0.97 0.72

Moderate 0.61 0.67

Severe 1.21 0.72

MODEL 2

No BPD Reference 0.08

BPD 0.91 0.52

Note: the coeffi cients in models 1 and 2 are the differences in slopes between the reference 
category and the given category.

Methods
The model fi tted a separate slope to each individual and these have • 
been averaged over all individuals in the given category. For example, 
for ‘mild’, the coeffi cient is the difference between the average slope 
for all babies with mild BPD, and all babies with no BPD 

Interpretation
For both models 1 and 2 the overall P values are not statistically • 
signifi cant
There is no evidence that the slopes of the lines are different for • 
babies with differing BPD status
There is no evidence that the change in eNO to 28 days is related • 
to BPD

Reference
1 May C, Williams O, Milner AD, Peacock J, Rafferty GF, Hannam S et al. Relation of exhaled 

nitric oxide levels to development of bronchopulmonary dysplasia. Arch Dis Child Fetal 
Neonatal Ed 2009; 94(3):F205–9.
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Principal components analysis
Multivariate methods
Multivariate methods are used to analyse multiple outcome variables 
together, in comparison with all previous methods where there was only 
one outcome variable. They are used in general to try to reduce a complex 
dataset to a simpler one which is easier to interpret and understand.

What is principal components analysis?
This method is used to reduce a dataset with many inter-correlated vari-
ables to a smaller set of uncorrelated variables which explain the overall 
variability almost as well. It is sometimes described as ‘reducing the 
dimensionality of a dataset’. The derived smaller set of variables is then 
used in later analyses in place of the original larger set. 

How principal components analysis works
The method gives a set of • principal components (PCs), each of 
which is a linear combination of all the original variables
If there are • n variables in total then a maximum of n PCs can be 
computed
Each PC explains a proportion of the total variability• 
The fi rst PC is the one that explains the maximum amount of the • 
variance and the second PC explains the next greatest amount and 
so on 

Principal component equations
The following equations show how principal components analysis works 
mathematically and how the principal components are related to the orig-
inal set of variables. Assuming that the original variables are:

x1,x2,x3 ... xp the method produces p principal components y1,y2,y3 ... yp,    
which are defi ned as follows:

y1 = b11x1 + b12x2 + ... + b1pxp

y2 = b21x1 + b22x2 + ... + b2pxp

yp = bp1x1 + bp2x2 + ... + bppxp

where b11, b12 etc. are coeffi cients. 

Practicalities
It is common practice to include enough PCs to explain at least 80% of • 
the total variability and this often needs only two or three 
Principal components analysis provides a single value for each PC for • 
each subject and therefore each PC is a new variable 
These are then used in further analyses in the same way as other • 
variables are analysed

Interpreting principal components
Specifi c principal components sometimes usefully represent a particular 
overarching theme, where several of the original variables contribute to 
the theme. The example (b Principal components analysis: example, 
p. 442) illustrates this.
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Principal components analysis: example
Example

Researchers wished to determine the important features of six lung 
function tests in 458 coalminers.1 They used principal components anal-
ysis and reduced the six tests to three meaningful respiratory compo-
nents. The results  are summarized in Table 12.12.

Table 12.12 Coeffi cients for the fi rst four principal components with 
six lung function variables

Component 1st 2nd 3rd 4th

FEV1 –0.46  0.18  0.23 –0.26

FVC –0.38  0.58  0.40 –0.22

FEV1/FVC –0.38 –0.57 –0.24 –0.52

Vmax50 –0.44 –0.32  0.12  0.05

Vmax25 –0.43 –0.21  0.17  0.77

TLCO –0.35  0.41 –0.83  0.14

% variability  74%  15%  7%  3%

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; TLCO, transfer factor 
of the lung for carbon monoxide.

The analysis produces six PCs but the four shown here explain • 
virtually all of the overall variability (99%) in the six lung function 
measures 
The fi rst principal component is:• 
–0.46 x FEV1 – 0.38 x FVC – 0.38 x FEV1/FVC – 0.44 x Vmax50 
–0.43 x Vmax25 – 0.35 x TLCO

The largest coeffi cients for the fi rst PC were for forced expiratory • 
volume in 1 second (FEV1), Vmax50, and Vmax25, which measure the 
capacity of the lungs, and so the authors concluded that the fi rst PC 
mainly represented lung size. It explained 74% of the total variability
The largest coeffi cients for the second PC were those for FVC and • 
FEV1/FVC which relate to airfl ow through the lungs and so it was 
concluded that this component mainly represented the degree 
of airfl ow obstruction. It explained a further 15% of the total 
variability.
The third PC was dominated by TLCO (transfer factor of the lung • 
for carbon monoxide) and so this component mainly represented 
impairment of gas transfer and explained a further 7% of the total 
variability
The fourth PC explained so little of the variability that it was not • 
considered further
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Hence, principal components analysis was able to reduce six lung • 
function variables to three variables (components), where each 
represented an important, and different, aspect of respiratory 
morbidity
The authors used the components in regression analyses to identify • 
men with different forms of lung function abnormalities (see 
paper for details1). In this way just three variables could be used 
to encapsulate the key features of lung function just as well as the 
original six variables
The authors concluded that the principal components method had • 
provided a ‘sensitive method of identifying men with unusual 
lung function’

Advantages and disadvantages of PC analysis
A set of inter-correlated variables can be replaced by a smaller set of • 
independent components which represent all of the key features of the 
original data
The problems of colinearity in a complex set of predictor variables may • 
be overcome  and the role of possible predictor variables can be more 
easily examined 
Each component is a new variable that is a linear combination of the • 
original variables, and so the actual values of the components are hard 
to interpret

Reference
1 Cowie H, Lloyd MH, Soutar CA. Study of lung function data by principal components analysis. 

Thorax 1985; 40(6):438–43.
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Cluster analysis
What is cluster analysis?
Cluster analysis is used to identify groups or clusters of individuals who 
have common features, in terms of known variables. It is has been used 
to identify groups at high risk of particular adverse events, as a basis for 
further analysis of causes and prevention. Clustering may be on a single 
level or may have a hierarchical structure, where groups are identifi ed 
within groups.

How does cluster analysis work?
The method is used to identify sets of individuals who are more like each 
other, than they are like other individuals. Since most datasets include 
several variables on each subject, it is not straightforward to do this with 
several variables at a time and so there are several methods that can be 
used. In general, the approaches are based on the following:

Determining clusters on the basis of measures of how far apart • 
individuals are for quantitative variables
Determining clusters on the basis of measures of how similar pairs of • 
individuals are 

Further details of cluster analysis are beyond the scope of this book but a 
simple example is given below and references for further reading are listed.

Example

In a study of factors related to premature delivery, researchers used a 
simple form of cluster analysis on variables associated with early delivery 
to try to identify groups of women who delivered too early to inform 
preventive programmes.1

The study reported three clusters of women delivering preterm:

Younger women, predominantly in manual occupations with low • 
income and minimum years of education and with mean gestational 
age 34.4 weeks
Older women who smoked, had manual occupations, mainly had low • 
income and minimum years of education and with mean gestational 
age 33.9 weeks
Older women who did not smoke, had higher income, more years • 
of education and were less likely to have manual occupations. These 
women had mean gestational age 35.0 weeks.

The authors concluded that there were ‘three subgroups of women 
delivering preterm: two clusters were predominantly of low social 
status and the third cluster comprised older women with higher social 
status who did not smoke’.1

Further reading
The fourth edition of Everitt and Landua’s Cluster analysis2 has a 
comprehensive account of cluster methods.
1 Peacock JL, Bland JM, Anderson HR. Preterm delivery: effects of socioeconomic factors, 

psychological stress, smoking, alcohol, and caffeine. BMJ 1995; 311(7004):531–5.
2 Everitt B, Landua SLM. Cluster analysis. 4th ed. London: Edwin Arnold, 2009.
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Factor analysis
What is factor analysis?
Factor analysis is related to principal components analysis in that it 
attempts to reduce the number of variables in a set of data. It is used com-
monly in the analysis of psychological tests or the analysis of psychological 
data where the aim is to identify underlying factors. 

How factor analysis works
The underlying hypothesis is that there are a number of common • 
factors that are hidden among the observed data and the method is 
used  to uncover them
Each observed variable is assumed to be a linear combination of the • 
(unknown) factors 
There is no unique solution to the factor analysis and so a process • 
called rotation is used to rotate to a simple structure that is easy to 
interpret
Having discovered factors within a set of data, this may need • 
confi rming in a further dataset
As with principal components analysis, a computer program is used for • 
factor analysis 

Example

Establishing new dimensions
An example of the use of factors analysis is the well-known Eysenck per-
sonality questionnaire (EPQ), which used factor analysis to demonstrate 
that personality had three dimensions:1 

extroversion/introversion• 
neuroticism/stability • 
psychoticism/socialization• 

Further reading on factor analysis
Article on the use of factor analysis in mental health• 2

Short textbook account of factor analysis (Everitt• 3)
Longer textbook account of factor analysis (Everitt and Dunn• 4)

Further reading on multivariate methods
Applied multivariate data analysis• 5 gives a thorough account of all 
methods outlined in this chapter

References
1 Eysenck HJ, Eysenck SBG. Manual of the Eysenck Personality Inventory. London: University of 

London Press, 1964.
2 Ismail K. Unravelling factor analysis. Evid Based Ment Health 2008; 11(4):99–102.
3 Everitt B. Statistical methods for medical investigations. 2nd ed. New York: Oxford University 

Press, 1994.
4 Everitt B, Dunn G. Applied multivariate data analysis. London: Edwin Arnold, 1991.
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Meta-analysis

Introduction
In this chapter we describe the statistical issues involved in performing 
meta-analyses. We discuss the sources and effects of publication bias and 
consider ways of correcting for it. We also discuss statistical and clinical 
heterogeneity and consider how these can be addressed in meta-analyses. 
Finally, we consider individual patient meta-analysis. Throughout, we 
include both trials and observational studies, discussing the challenges that 
each study design brings and giving examples.



448 CHAPTER 13 Meta-analysis

Meta-analysis: introduction
What is a meta-analysis?

It is a statistical analysis which combines the results of several • 
independent studies examining the same question
It is based on a review of all available evidence• 

Why do meta-analysis?
To pool all fi ndings on a topic to gain an overall view • 
To increase statistical power compared with individual studies • 
To improve estimates of effect size• 
To resolve controversies when the fi ndings of studies disagree• 
To answer new questions not addressed in individual studies• 

Types of literature reviews
In the past clinicians and scientists have often relied on editorials and 
narrative reviews to provide a summary of evidence on a topic. However, 
this is problematic if the reviews do not use scientifi c methods to assess 
and present data, since different reviewers may reach different conclu-
sions based on the same data. This is why a formal statistical process of 
review is needed.

Meta-analysis has been most widely used to pool clinical trial results 
and this is the most straightforward application. However, meta-analysis is 
increasingly used to synthesize the fi ndings of epidemiological studies. 

Traditional review versus systematic reviews
Traditional or ‘informal’ reviews are not necessarily systematic. ‘Systematic’ 
implies that all available studies are identifi ed so that the evidence base 
provides an unbiased representation of the totality of evidence. By con-
trast, informal reviews may be based on literature to hand or on a limited 
search of studies conducted. 

Protocol for meta-analysis
A meta-analysis is a research study in its own right and so needs a pro-
tocol. This should include the following:

Aims of the meta-analysis• 
Rules for inclusion and exclusion of studies• 
Search strategies• 
Statistical methods• 
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What makes a good meta-analysis?
The meta-analysis has a clear question• 
All relevant evidence has been gathered• 
The individual study estimates have been evaluated to ensure that • 
studies are suffi ciently similar to be pooled
Publication bias has been considered and addressed as appropriate• 
The data have been suitably analysed and presented with a clear • 
description of how the meta-analysis was conducted 

Sample size for meta-analysis
The number of studies in a meta-analysis obviously varies according to • 
what research has been previously conducted in a specifi c area
The greater the number of studies, the greater is the precision of the • 
pooled estimate in a meta-analysis
The most important issue is that the studies represent the • totality of 
evidence and so provide an unbiased overall estimate
It may be perfectly reasonable to pool just three or four studies if they • 
are all that exist  

0 A large meta-analysis that obtains only a subset of all studies because of 
publication bias may give a very precise estimate but it may be biased.
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Searching for studies
Introduction
A thorough and systematic search includes all relevant publications. Such 
a search may include the following:

Computerized databases such as PubMed and MedLine• 
Bibliographies of textbooks• 
References in published original studies and in review papers• 
Archives of studies conducted• 
Personal communication with specialists in the fi eld of interest• 

It is usually necessary to search multiple sources for several reasons:
Electronic databases are not totally complete due to the accidental • 
omission of a minority of publications 
Studies may only be listed in a specialist database, such as the AMED • 
database for studies in allied and complementary medicine

Search strategy
This needs to be tailored to the purpose of the study. It may be appro-
priate to include peer-reviewed literature only or to append ‘grey’ (non-
peer-reviewed) literature. It may be necessary to do the search in several 
stages, for example to:

Identify abstracts in subject area• 
Read and discard those that are inappropriate• 
Obtain full versions of all potentially appropriate papers and discard • 
those that are then shown to be inappropriate

Choosing search terms for electronic searching
Search terms need to be inclusive – it may be helpful to get advice from 
specialists who have done similar work and/or librarians. The Cochrane 
Collaboration website (M www.cochrane.org) has a wealth of informa-
tion including comprehensive guidelines and databases of reviews. Specifi c 
suggestions are: 

Use a combination of recognized words•  – MeSH (medical subject 
heading) and free text words
Watch out for UK versus US spellings•  and include both (e.g. 
paediatric and pediatric, randomised  and randomized), and beware 
of different versions of the same term (e.g. randomized trial 
and RCT)
Check that the search strategy has worked•  as far as possible. For 
example, check that studies that are known to be available have in fact 
been identifi ed by the strategy adopted

www.cochrane.org
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Extracting the relevant data
Once the papers have been identifi ed it is important to devise a system 
for extracting and recording the relevant data. Some of the key points are 
listed below.

Consider what information is needed and in what format it should be • 
recorded
Design paper or electronic forms and test them thoroughly to make • 
sure they work across the a range of papers/studies/estimates and 
modify them as needed before the ‘real’ study starts
It may be helpful to look at forms used in other reviews for tips• 
Ensure the data can be easily taken from the form and used in the • 
statistical analysis 

Detailed advice is available on the Cochrane Collaboration website: 
M www.cochrane-net.org/openlearning/HTML/mod7-2.htm

www.cochrane-net.org/openlearning/HTML/mod7-2.htm
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Combining estimates in meta-analyses
Vote counting
The simplest form of meta-analysis is ‘vote-counting’, in which the 
numbers of studies showing statistically signifi cant (‘positive’) results are 
counted. If the majority of studies are positive then it may be argued that 
there is ‘consensus’ in favour of a conclusion that the result is positive 
overall. This approach is sometimes used as an informal starting point but 
there are obvious problems with it:

It treats a non-signifi cant result as indicating that there is ‘no effect’, • 
which may not necessarily be true
It fails to take account of the size and direction of individual study • 
effects
It fails to take account of the precision of the estimated effects• 
In its crudest form it takes no account of study design and/or study • 
quality
Borenstein et al., Chapter 28,1 discusses vote counting in some detail 

and gives examples to illustrate its problems.

Sign test
This is a better choice than vote counting and is reasonable where no 
numerical data are provided from studies but the direction of the effect 
is known, or where studies are so diverse that a pooled estimate makes 
no sense. 

The test is based simply on the number of studies showing effects in • 
either the positive or negative direction
It takes no account of sample size, statistical signifi cance, or precision• 
It tests the null hypothesis that the mean effect across studies is 0. For • 
more details, see Borenstein et al., Chapter 361

Combining P values 
Another way of summarizing several studies is to combine their P values 
to give a summary P value. It can be useful when combining studies which 
use different outcomes to assess the same question. For example, when 
studying lead exposure in children, studies can measure lead in different 
samples of the body, such as hair, teeth, and nails, and estimates cannot be 
sensibly combined. It may be informative to combine P values when the 
P value itself is reported for each study but the sample sizes are not, so 
that effect sizes cannot be computed.

There are two relatively easy ways to combine P values, the fi rst • 
based on the chi-squared distribution and the second on the Normal 
distribution. Both give a summary P value and its statistical signifi cance 
(see  Borenstein et al., Chapter 36,1 for worked examples)
Each method takes account of the • direction of effect in the 
calculations as well as the actual P value and so this information needs 
to be available
Both methods test the null hypothesis that the • effect size is 0 in all 
studies
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0 Note that, since the sizes of effects in the studies are not used, it is pos-
sible for an overall conclusion to be swayed by a few small and imprecise 
studies that show a positive fi nding.

Weighting effect estimates 
The simplest way of summarizing a number of study estimates is to 
calculate the arithmetic mean of all of the individual estimates. The 
problem with this is that it gives equal weighting or emphasis to all studies, 
so a small imprecise study with an extreme result can have a large effect 
on the overall average. (In just the same way as an extreme value can 
affect a mean calculated from individual subjects.) It is therefore common 
practice in meta-analyses to weight the individual studies so that bigger 
and more precise studies have more infl uence on the fi nal summary value. 
This can be done by:

Using the number of subjects in the study to directly weight the results• 
Using the inverse of the variance (standard error squared) of the • 
individual study results to directly weight the results

In practice, the second way, weighting by the inverse of the variance, is 
more often used. Later sections (b Fixed effects estimates, p. 458, and 
Random effects estimates, p. 460) illustrate how this works in practice.

Software
Meta-analysis can be done by hand using standard formulae as referenced 
above, but it is usually done using specialized statistical software avail-
able within standard statistical programs (e.g. Stata) or using a specialized 
meta-analysis program (e.g. comprehensive meta-analysis: CMA, RevMan. 
The following references are not exhaustive but may be useful:

CMA• : Borenstein et al., Chapter 441

RevMan• : Cochrane collaboration, M www.cochrane.org
Stata•  meta-analysis programs: Sterne2

SPSS, SAS, R• : meta-analysis programs are referenced in Borenstein 
et al., page 3921

References
1 Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Chichester, 

West Sussex: Wiley, 2009.
2 Meta-analysis in Stata: an updated collection from the Stata Journal. Ed: JAC Sterne College 

Station, TX: Stata Press, 2009.

www.cochrane.org
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Heterogeneity
What is heterogeneity?
In the context of a meta-analysis the presence of heterogeneity is usually 
taken to mean that there is observed variability between study estimates. 
Consider Figure 13.1 which clearly shows different degrees of variability in 
the study estimates for different outcomes from the same meta analysis.1 
For example, there appears to be a greater degree of heterogeneity for 
myocardial infarction and stroke than for major cardiovascular events and 
all-cause mortality.

Fig. 13.1 Heterogeneity in effects of aspirin therapy on different outcomes in the 
same meta-analysis.
Reproduced from BMJ, De Berardis et al, 339, b4531 © 2009 with permission from the BMJ 
Publishing Group Ltd.

No of events/No in group

Aspirin

Major cardiovascular events

Myocardial infarction

86/1277

108/638

62/513

22/512

379/1855

657/4795

0.80 (0.59 to 1.09)

0.97 (0.76 to 1.24)

0.90 (0.63 to 1.29)

0.90 (0.50 to 1.62)

0.90 (0.78 to 1.04)

0.90 (0.81 to 1.00)

0.87 (0.40 to 1.87)

1.10 (0.83 to 1.45)

1.48 (0.88 to 2.49)

0.49 (0.17 to 1.43)

0.82 (0.69 to 0.98)

0.40 (0.20 to 0.79)

0.86 (0.61 to 1.21)

0.89 (0.54 to 1.46)

0.74 (0.49 to 1.12)

0.46 (0.25 to 0.85)

0.89 (0.36 to 2.17)

1.17 (0.87 to 1.58)

0.83 (0.60 to 1.14)

0.10 (0.01 to 0.79)

1.23 (0.80 to 1.89)

1.23 (0.49 to 3.10)

0.87 (0.73 to 1.04)

0.94 (0.72 to 1.23)

0.90 (0.57 to 1.14)

0.93 (0.72 to 1.21)

1.23 (0.69 to 2.19)

0.91 (0.78 to 1.06)

0.93 (0.82 to 1.05)

68/1262

105/638

58/514

20/519

350/1856

601/4789

28/1262

90/638

36/514

5/519

241/1856

11/275

395/5064

14/1277

82/638

24/513

10/512

283/1855

26/258

439/5053

12/1262

37/638

15/514

9/519

92/1856

181/4789

32/1277

50/638

31/513

10/512

78/1855

201/4795

1/1262

43/638

10/519

244/1856

298/4275

10/1277

35/638

8/512

275/1855

328/4282

34/1262

94/638

25/519

340/1856

493/4275

38/1277

101/638

20/512

366/1855

525/4282

0.03 0.125 0.5 1 2 8

JPAD
10

POPADAD
9

WHS
8

PPP
22

ETDRS
21

Total

JPAD
10

POPADAD
9

WHS
8

PPP
22

ETDRS
21

PHS
17

Total

JPAD
10

POPADAD
9

WHS
8

PPP
22

ETDRS
21

Total

JPAD
10

POPADAD
9

PPP
22

ETDRS
21

Total

JPAD
10

POPADAD
9

PPP
22

ETDRS
21

Total

Stroke

Death from cardiovascular causes

All cause mortality

Favours

aspirin

Favours control

or placebo

Control or

placebo

Relative risk

(95% CI)

Relative risk

(95% CI)



455HETEROGENEITY

Tests for heterogeneity
A statistical test based on the chi-squared distribution can be used 
to assess the statistical evidence for heterogeneity. The test statistic Q 
follows a chi-squared distribution (see b Chi-squared test, p. 262) with 
n–1 degrees of freedom where n is the number of study estimates in the 
meta-analysis.

While the test for heterogeneity can be useful, it should be used with 
caution because:

In general the test is conservative and so a non-signifi cant result cannot • 
be interpreted as showing that there is no heterogeneity. For this 
reason a cut-off of P<0.10 is commonly used rather than P<0.05 to 
indicate heterogeneity
The test itself does not provide an estimate of the degree of • 
heterogeneity (see I2 statistic below) 
Like all statistical tests, this test is less powerful when the number • 
of studies is small (the sample size), and is very powerful when the 
number of studies is large
The test is a statistical tool and does not on its own provide any insight • 
into the reasons for any heterogeneity that exists

The I2 statistic
This is a descriptive statistic that provides an estimate of the proportion of 
the total variability between estimates that can be attributed to heteroge-
neity itself.2 In other words it indicates what proportion of the observed 
variability refl ects real differences in effect size and so ranges from 0 to 
100%. It is based on the test statistic Q, calculated to test for heteroge-
neity. Hence I2 is larger when there is more heterogeneity.

Sources of heterogeneity
If there is evidence for statistical heterogeneity, either from a test or from 
simply observing the individual study estimates, then it is reasonable to 
consider what the sources of heterogeneity might be. Thompson recom-
mended that meta-analyses should always incorporate a careful investi-
gation of potential sources of heterogeneity.3 Possible clinical sources of 
heterogeneity include:

Treatment differences in randomized controlled trials (e.g. doses, other • 
medications given)
Variation in patients (e.g. age/sex/diagnosis etc.)• 
Variation in study design (e.g. parallel group versus crossover design for • 
trials, cohort versus case–control for observational studies)

References
1 De Berardis G., Sacco M, Strippoli GF, Pellegrini F, Graziano G, Tognoni G et al. Aspirin for pri-

mary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised 
controlled trials. BMJ 2009; 339:b4531.

2 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 
21(11):1539–58.

3 Thompson SG. Why sources of heterogeneity in meta-analysis should be investigated. BMJ 1994; 
309(6965):1351–5.
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Overcoming heterogeneity
Fixed and random effects
When study estimates are pooled in a meta-analysis using the inverse of 
the variance as the weight, it is implicitly assumed that there is a single 
underlying true effect that each study is estimating. This type of meta-
analysis is known as a fi xed effects analysis. If, on the other hand, it 
is more reasonable to assume that the study estimates come from a 
population of true estimates, then a modifi ed analysis is needed which 
takes into account this additional variability – a random effects analysis 
(b Multilevel models, p. 436). 

Meta-analysis for heterogeneous studies
A pooled estimate may be adjusted for statistical heterogeneity by using 
a random effects model as described above. When the sources of het-
erogeneity are known, it may be useful to stratify the meta-analysis by 
one or more of these sources, if there are enough studies to allow this. 
See b Figure 13.3, p. 463 Another way to deal with heterogeneity is to 
use meta-regression.

Meta-regression
Meta-regression is used to adjust the pooled estimate for known sources 
of variation in the same way as multiple regression techniques are used to 
adjust individual data for confounding factors (see b Multiple regression, 
p. 406). Meta-regression works in a very similar way to multiple regression 
in that the study estimates are the outcomes and the sources of variation, 
such as age of patients and dose of treatment, are the predictor variables. 

When considering using meta-regression the following issues arise:
The number of studies needs to be suffi cient in proportion to the • 
number of predictor variables to be included the same way as in a 
multiple regression analysis
Information relating to the proposed predictor variables needs to be • 
available for all studies in the same format

For a thorough description of meta-regression and examples see 
Borenstein et al., Chapter 20.1

Reference
1 Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Chichester, 

West Sussex: Wiley, 2009.
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Fixed effects estimates
Formulae for meta-analysis
The formulae below can be used to carry out a fi xed effects meta-anal-
ysis, test for heterogeneity and calculate I2. These formulae can be used 
for continuous data, such as mean differences as well as for relative risks 
and odds ratios (both analysed on the log scale as the example opposite 
shows).

0 Note that the formula for the weighted pooled estimate cannot be 
used if there is evidence for heterogeneity. In such cases a random effects 
meta-analysis must be done.

1. Fixed effects pooled estimate
If there are n studies and each study estimate is Ei with variance Vi then 
the weight is 1/Vi = wi

The pooled estimate E* is given by:

E
wiEi
wi

E
wi

*

* .

=
∑
∑

±
∑

   with 95% CI:

1 9. 6

2. Test for heterogeneity

Q wi iw ( )E EiEE * 2)

If there is no heterogeneity, Q follows a chi-squared distribution with 
n–1 degrees of freedom

Note that meta-analysts often use P<0.10 as a cut-off for statistical sig-
nifi cance for this test

3. I2 statistic
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Q
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Calculating a fi xed effects pooled odds ratio 
The formulae below show how a weighted fi xed effects odds ratio is cal-
culated using the raw data from each study. Note that the calculations are 
done on the log scale and then back-transformed, in common with other 
calculations that are performed on odds ratios.

Suppose there are n studies to be meta-analysed. Let pi1 and pi2 be the 
proportions, and ni1 and ni2 be the totals in groups 1 and 2 for study i.

The loge ORi in study i is yi and the standard error is SEi where:

y
p p

i e
i

i

i

i

=
⎛
⎝⎜
⎛⎛
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⎞
⎠⎟
⎞⎞
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1

1
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2)pi− p (
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i i i
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1 1pip 1 2nin 2 2i( )pi−1 ( )p1 2pip

Each study estimate is weighted by wi = 1/SEi
2 and so the pooled 

estimate is:

log * * * *
e

i i

i

OR
w yi
w

y O* R y*= ∑
∑

OR= y )

95% confi dence limits on the log scale are calculated as:

log
.*

e

i

OR
w

±
∑

1 9. 6

These are anti-logged to get the 95% confi dence interval on natural 
scale.

Using a statistical program
These calculations can be done using specialized software (see b 
Combining estimates in meta-analyses, p. 452). This requires the data to 
be entered in a specifi ed format, which may be:

Odds ratios: log odds ratio and log standard error for each study or • 
odds ratio and lower 95% confi dence limit (from which the standard 
error can be derived) 
Risk ratios (relative risks): as for odds ratios• 
Difference of means: individual group means, • n, standard deviation, or 
difference of means and its standard error or lower confi dence limit



460 CHAPTER 13 Meta-analysis

Random effects estimates
Within and between study variability
A random effects meta-analysis is used when it cannot be assumed that 
all studies are estimating the same underlying value. In other words, there 
are two sources of variability:

Within-study variability• : this is the variability between subjects within 
a study (sampling error)
Between-study variability• : this is the variability between study effects 
in different studies (true variation in study effect sizes)
A random effects meta-analysis takes account of both of these sources 

of variability and so the overall variability in each study is greater than 
would be the case for a fi xed effects analysis. This leads to different 
weights and to wider confi dence intervals in general. The pooled value 
is often brought slightly closer to the null value in a random effects meta-
analysis than in a fi xed effects analysis using the same set of studies.

Random effects weights
Since the total variability has two components, within and between-
studies, these must be used to derive the weights for the random effects 
meta-analysis. The within-studies variability is estimated in the usual way 
from the variance of the estimated effect in each study. One way to esti-
mate the between-studies variability is to use the DerSimonian and Laird 
method,1 which is based on the Q statistic that tests for heterogeneity.

Using a statistical program
Few people with access to a computer would do these calculations by 
hand, but the steps and the formulae are given so that the interested or 
more mathematically minded readers can see where the numbers come 
from. Otherwise the computer program can be a huge black box!
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Formulae for meta-analyses

Random effects weights
Assume there are n studies and each study estimate is Ei with variance 
Vi and weight 1/Vi = wi

1. Calculate fi xed effects pooled estimate E*

E
w E
w

i iE

i

* = ∑
∑

2. Calculate Q where

Q wi i( )E EiE * 2)

3. Calculate C where

C w
w
wi

i

i

∑ − ∑
∑

2

4. Estimate between studies variance by:

T
Q n

C
2 1= −n

5. The total variance for study i is: Vi +T2

6. Random effects weight wi 
re is :

1
2V TiVV

7. Random effects weighted pooled estimate E*re is:

E
w E
w

E
w

re i
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i

i
re

re

i
re

*

* .

= ∑
∑

±
∑

   with 95% CI:

1 9. 6

Reference
1 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3):177–88.
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Presenting meta-analyses
Forest plots
The results of a meta-analysis are often presented graphically as a forest 
plot. In a forest plot, the individual study results are shown as a circle or 
square to indicate the study estimate, and a horizontal line to indicate the 
95% confi dence interval for the estimate. The overall pooled value and 
95% confi dence interval is shown at the bottom of the graph, usually as 
a diamond with the width of the diamond indicating the extremes of the 
pooled 95% confi dence interval.

The studies are often displayed in chronological order and, where there 
are subgroups of patients, a series of plots may be given each with its own 
pooled value plus an overall pooled estimate. Figures 13.2 and 13.3 show 
forest plots from a meta-analysis where (i) the outcome was a difference 
in means from an observational study and (ii) the outcome was a relative 
risk from a randomized controlled trial.

Example 1
These data are from a meta-analysis of observational studies of passive 
smoke exposure and baby’s birthweight in pregnant women who were 
not active smokers.1 The outcome was the difference in mean birth-
weight (g) between women unexposed and exposed to passive smoke 
so a positive difference implies an adverse effect of passive smoke.
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Haddow
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Q test for heterogeneity gave P=0.23 (I2=22%) and so the fi xed effects 
estimate was presented

The pooled estimate was 31 g (95% CI: 19 to 44)• 
Note this example is used later in this chapter (• b Detecting 
publication bias, p. 466)

Fig. 13.2 Forest plot from meta-analysis of mean difference on birthweight 
between women exposed and unexposed to passive smoke in pregnancy.
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Example 2
These data come from a meta-analysis of trials of vitamin D and fall pre-
vention in older people.2 Eight randomized controlled trials were included, 
some of which tested several doses of vitamin D, giving 11 estimates 
overall. The pooled relative risk (RR) was 0.87 (95% CI: 0.77 to 0.99) but 
with signifi cant heterogeneity (Q test P=0.05). The dose of vitamin D was 
a strong source of variability and so estimates were grouped by dose.

High dose vitamin D Relative risk (95% CI)

Pooled relative

risk (95% CI)

0.81 (0.71 to 0.92)

Pooled relative

risk (95% CI)

1.10 (0.89 to 1.35)

Low dose vitamin D

Combined

Combined

Favours

supplemental

vitamin D

Favours

control

0.1 0.5 0 5 10

Prince et al
w3

Broe et al
w1

Broe et al
w1

(200 IU D
2
/day)

Broe et al
w1

(400 IU D
2
/day)

Broe et al
w1

(600 IU D
2
/day)

Flicker et al
w4

Bischoff-Ferrari et al
w2

Pfeifer et al
w5

Bischoff et al
w6

Pfeifer et al
w7

Graafmans et al
w8

The white squares indicated randomized controlled trials with • 
vitamin D2 and the shaded boxes indicated those with vitamin D3 
The solid line indicates the null value for the RR, 1.0 • 
The dotted line indicates the pooled estimate• 
For high dose: Q test for heterogeneity gave P=0.12 (I• 2=41%)
For low dose: Q test gave P=0.42 (I• 2=0%)
For high dose: pooled RR estimate was 0.81 (95%CI: 0.71 to 0.92)• 
For low dose: pooled RR estimate was 1.10 (95%CI: 0.89 to 1.35)• 
Note that the authors chose to use random effects estimates • 
regardless of the P value of the Q test for heterogeneity

References
1 Peacock JL, Cook DG, Carey IM, Jarvis MJ, Bryant AE, Anderson HR et al. Maternal cotinine level 

during pregnancy and birthweight for gestational age. Int J Epidemiol 1998; 27(4):647–56.
2 Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R et al. Fall 

prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised 
controlled trials. BMJ 2009; 339:b3692.

Fig. 13.3 Forest plot from a meta analysis of vitamin D and fall prevention in older 
people.
Reproduced from BMJ, Bischoff-Ferrari et al, 339, b3692 © 2009 with permission from the BMJ 
Publishing Group Ltd.
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Publication bias
What is publication bias?
Publication bias occurs when the papers that are published on a topic are 
an incomplete subset of all the studies that have been conducted on that 
topic. There are several reasons why publication bias happens.

1. Statistical signifi cance
There is much evidence to show that studies with statistically signifi cant 
results are more likely to be published that those which do not. This can 
happen because:

The author either does not write up the work and submit a paper at • 
all, or after submitting a paper and getting a rejection, gives up
The journal editors reject papers reporting non-signifi cant fi ndings • 
because they are thought to be uninteresting and/or non-informative
Researchers conduct exploratory analyses on many outcomes and only • 
the signifi cant ones are written up 

2. Fashion and popularity
Certain topics are popular at any given time. For example, at the time of 
writing this chapter, there is a pandemic of swine fl u and hence there is a 
great deal of research activity and research interest in this topic. 

By the same token, certain topics may be unpopular which may 
hinder their publication such as studies showing no harmful effects of 
agents assumed to be harmful, such as smoking, radiation. As an anecdotal 
example, JP was involved in a study which observed that for pregnant 
women who smoked below a particular cut-off, there were no adverse 
effects on their baby’s growth whereas the babies of women smoking 
above this amount had poorer growth. The authors experienced some 
diffi culty in getting this work published because reviewers expressed 
concern regarding the implications. 

3. Sponsorship
The source of a study’s funding may affect the chances of publication. 
Studies sponsored by some agencies, such as tobacco companies, may be 
unwelcome. Funded studies, particularly those with commercial sponsors, 
may be more actively pursued to publication than non-funded studies. 

4. Language
The English language dominates the research literature. Hence, papers 
written in other languages may not be published in prominent journals 
and so may be missed or omitted from a meta-analysis, particularly where 
a research team is unable to translate foreign work. 
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Consequences of publication bias
1.  Where there is publication bias, published papers are not a 

representative sample of all evidence and so the pooled evidence 
from published papers is biased. This often leads to infl ated 
estimates whereby the overall size of effect is exaggerated. 

2.  The other consequence is delayed publication because fi rst choice 
journals fail to publish the work. This means that, at the point at which 
a search for studies is made, those that are published quickly will be 
obtained but studies whose fi ndings are available but not yet published 
will not be so easily found.

Note: it is possible to include unpublished work in a meta-analysis 
although this may be questioned because the work has not yet been 
subject to formal peer-review.

Reducing publication bias
Registration of study protocols• : researchers are encouraged to 
register the protocol for their studies, and specifi cally the International 
Committee of Medical Journal Editors (ICMJE; M www.icmje.org) now 
requires pre-registration of trials as a condition for publication
Publication of negative studies• : ICMJE has issued a statement to 
encourage publication of all sound studies regardless of statistical 
signifi cance:
‘Editors should consider seriously for publication any carefully done 
study of an important question, relevant to their readers, whether 
the results for the primary or any additional outcome are statistically 
signifi cant. Failure to submit or publish fi ndings because of lack of 
statistical signifi cance is an important cause of publication bias.’

www.icmje.org
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Detecting publication bias
Funnel plots
A funnel plot is a simple graphical method for exploring the results from 
studies to see if publication bias might be present. It works as follows:

The magnitude of study effect is plotted against a measure of study • 
precision, such as the inverse of the variance or standard error, or the 
sample size
As the precision (sample size) increases, the range of estimates • 
becomes narrower showing a funnel shape
If there is no publication bias the plot will be symmetrical about the • 
pooled value for all the studies, because small imprecise studies with 
negative results are as likely to be published as small studies with 
positive results
If, however, more small studies with positive fi ndings reach publication • 
than small studies with negative fi ndings, the wide section of the funnel 
will not be symmetrical – there will be ‘holes’ in the plot

Is there publication bias or not?
It will be obvious if there is substantial asymmetry but it may be harder • 
to differentiate between slight asymmetry and random variation
There are statistical tests, such as • Begg’s rank correlation test and 
the linear regression test by Egger, which are described in Sutton, 
Chapter 7,1 and a simulated example is shown in here (Fig. 13.4). These 
tests can be applied to aid decision making but have limitations in how 
they perform in different situations and should at best be regarded as 
a guide2.

0 Limitations of funnel plots and tests for publication bias
A funnel plot is unlikely to be useful unless there are a range of studies • 
of different sizes
Asymmetry in a funnel plot may be caused by factors other than • 
publication bias, such as study quality or the form of an intervention 
either of which may differ according to the size of the study (small 
study effects3). A new graphical technique to look at this is the 
contour-enhanced funnel plot (details omitted but see Peters 
et al.4)
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Example

These data are from a meta-analysis of observational studies exploring 
the effect of passive smoke exposure on baby outcome in pregnant 
women who were not active smokers.5 The graph in Figure 13.4a shows 
a simulated funnel plot where there is no publication bias and the graph 
in Figure 13.4b is the actual funnel plot drawn from the data.

The outcome was the difference in mean birthweight in grams 
between women unexposed and exposed to passive smoke. A positive 
difference implies an adverse effect of passive smoke exposure.
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The simulated funnel plot is symmetrical but the real funnel plot from • 
the data was not – there were too few studies with either very small 
positive effects or with large negative effects 
This is an example of a typical funnel plot where there is publication • 
bias 

Note that these studies were all secondary analyses of larger studies 
which had investigated factors related to the outcome of pregnancy. 
It seems very plausible that authors would not bother to publish sec-
ondary analyses that did not show a signifi cant adverse effect of passive 
smoking. See b Presenting meta-analyses, p. 462, for the pooled 
estimate and forest plot for these data.

References
1 Sutton AJ. Methods for meta-analysis in medical research. Chichester, West Sussex: John Wiley, 

2000.
2 Sutton AJ, Higgins JP. Recent developments in meta-analysis. Stat Med 2008; 27(5):625–50.
3 Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with 

publication and other biases in meta-analysis. BMJ 2001; 323(7304):101–5.
4 Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel 

plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 2008; 
61(10):991–6.

5 Peacock JL, Cook DG, Carey IM, Jarvis MJ, Bryant AE, Anderson HR et al. Maternal cotinine level 
during pregnancy and birthweight for gestational age. Int J Epidemiol 1998; 27(4):647–56.

Fig. 13.4 Meta-analysis of passive smoke and birthweight: simulated funnel plot 
(a) where there is no publication bias and (b) actual funnel plot drawn from the data.
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Adjusting for publication bias
Introduction
Publication bias leads to biased estimates in a meta-analysis and there 
are several methods that attempt to adjust the pooled estimate for the 
‘missing’ studies.

Trim and fi ll
This method works in the following way:

A funnel plot is drawn• 
Small studies are removed until the plot is symmetrical• 
The true centre of the plot is estimated• 
The ‘trimmed’ studies are replaced with their refl ections• 
The effect size is re-estimated and the number of ‘missing’ studies is • 
noted

Example

Figure 13.5 shows data from a meta-analysis of effects of exposure 
to outdoor air pollution and health. These particular data are from 
74 international studies of effects of particulate matter (PM10) on all-
cause mortality. Funnel plots and trim and fi ll were used to investigate 
publication bias and to attempt to estimate how sensitive the fi ndings 
were to any such bias.1
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Fig. 13.5 Trim and fi ll for the meta-analysis of effects of PM10 on mortality.
Reproduced from Epidemiology, Anderson et al., 16(2), 155 © 2005 with permission from Wolters 
Kluwer Health.
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Example (continued)

The solid dots are the study estimates; the open diamonds are the • 
imputed values using trim and fi ll
The lack of symmetry suggests the presence of publication bias• 
The solid line is the null value (RR=1.0); the dashed line is the pooled • 
value from the reported study data; the dotted line is the pooled 
value adjusted using trim and fi ll
The pooled RR was reduced from 1.006 to 1.005 for a 10 • μg increase 
in PM10 level and remained statistically signifi cant
It was concluded that, although there was strong evidence for • 
publication bias, the pooled estimates remained consistent with a 
substantial impact of outdoor pollution on mortality when scaled up 
to population level

Reference
1 Anderson HR, Atkinson RW, Peacock JL, Sweeting MJ, Marston L. Ambient particulate matter 

and health effects: publication bias in studies of short-term associations. Epidemiology 2005; 
16(2):155–63.
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Adjusting for publication bias 
(continued)
Regression method
Regression methods have been proposed to test for publication bias and 
their use has been extended recently by Moreno and others to obtain an 
adjusted estimate.1 The method is based on Egger’s test whereby a regres-
sion line is drawn through the study estimates in the funnel plot.

Example

See Figure 13.6. These data represent a simulated asymmetrical funnel 
plot. Egger’s regression line is drawn through the points and a negative 
intercept indicates publication bias. The point at which the precision is infi -
nitely large corresponds to the point 0 on the y-axis and this is proposed 
as the adjusted pooled estimate – here a log odds ratio (lnOR) = 0.38.
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Fig. 13.6 Adjusting for publication bias: Simulated asymmetrical funnel plot and 
Egger’s regression line.
From Moreno et al.1
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Which method to use?
At the time of writing this chapter, regression methods are preferred • 
to trim and fi ll
Moreno and colleagues’ paper• 1 compared the performance of trim and 
fi ll and several versions of the regression method and concluded that 
regression-based adjustments for publication bias were more reliable 
than trim and fi ll methods
This is a very active and fast-moving area of statistical research and so • 
interested readers are advised to check current research fi ndings

Reference
1 Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL et al. Assessment of regres-

sion-based methods to adjust for publication bias through a comprehensive simulation study. 
BMC Med Res Methodol 2009; 9:2.



472 CHAPTER 13 Meta-analysis

Independent patient data 
meta-analysis
Introduction
Traditional meta-analysis combines summary data from each study to give 
an overall estimate. This type of meta-analysis therefore uses summary 
statistics, such as study-level means or relative risks, to put into the 
analysis. These study-level estimates are reasonably easy to obtain as 
long as the data are in the public domain, such as in the peer-reviewed 
literature.

Limitations of study-level meta-analyses
Individual patient data characteristics that may affect their outcome • 
and contribute to both within and between-study variability, are not 
available
Reported analyses are often limited by space and may therefore • 
exclude an outcome of interest

Independent patient data (IPD) meta-analysis
IPD meta-analysis uses the raw patient data from each study that is to 
be included. It therefore overcomes the limitations of study-level meta-
analyses and allows adjusted analyses, subgroup analyses, and new out-
comes to be explored.

In order to perform an IPD meta-analysis, it is necessary to contact and 
obtain all relevant data from the original researchers. This is not a trivial 
task for the following reasons:

Data from older studies may have been destroyed • 
Authors of original study papers may have moved institutions and/or • 
may not be contactable 
Authors from different countries may store data in different formats • 
and/or languages, which may make it to diffi cult to share the data
Some authors may not wish to share their data or may be unable to do • 
so due to contractual or data protection restrictions

For these reasons IPD meta-analyses are relatively uncommon at present.
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Example

The PreVILIG Collaboration is a group of neonatologists and trialists 
who have collated individual patient data from all randomized con-
trolled trials of elective high-frequency oscillatory ventilation in preterm 
infants with respiratory distress syndrome. The aim was to supplement 
the fi ndings of systematic reviews of aggregate data concerning trials 
conducted between 1989 and 2008 by exploring subgroups of infants in 
whom treatment benefi ts may vary.

At the time of writing this chapter, detailed data have been obtained 
from over 80% of all patients entered into trials during the period. 
A published protocol sets out the aims of the study1 and analyses are 
ongoing.

Further reading on IPD meta-analysis

Sutton, Chapter 12• 2 
Borenstein • et al., Chapter 343

References
1 Cools F, Askie LM, Offringa M. Elective high-frequency oscillatory ventilation in preterm infants 

with respiratory distress syndrome: an individual patient data meta-analysis. BMC Pediatr 2009; 
9:33.

2 Sutton AJ. Methods for meta-analysis in medical research. Chichester, West Sussex: John Wiley, 
2000.

3 Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Chichester, 
West Sussex: Wiley, 2009.
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Challenges in meta-analysis
Introduction
Meta-analyses involve many challenges which have not been covered in 
this chapter so far. A few of these are outlined below.

Trial designs
Trials of treatments for chronic conditions may include both • parallel 
groups designs and crossover trials. Combining data from these is 
not straightforward. See Elbourne1 for more details
Some patients are • withdrawn or lost to follow-up in many trials but 
this means that published analyses are not strictly ‘intention to treat’ 
(see b Intention to treat, p. 22). It is not always easy to determine 
from papers why patients are missing from analysis and whether it can 
be reasonably assumed that the analysis presented was conducted on 
an ‘intention to treat’ basis. 

Observational study designs
Data may come from a combination of observational studies such as • 
cohort, case–control, cross-sectional and it may not be reasonable 
to pool estimates across all studies. Even if studies are all of one type, 
variability between patient groups may lead to heterogeneity and this 
may make pooled estimates hard to interpret
A large observational study is not necessarily of better quality than a • 
small one, unlike with randomized controlled trials, where bigger is 
usually better. A large observational study may provide big numbers 
but lower quality data or less detailed information 
Diagnostic studies•  usually provide several outcomes, such as the 
sensitivity and specifi city of a test, perhaps a receiver operating 
characteristic (ROC) curve and/or likelihood ratio statistics. The 
combination of estimates from these studies is not straightforward – 
see Deeks2 and Leefl ang et al.3 

Disparate outcomes
For example, • pain scores may be measured using a continuous or 
categorical scale and may refl ect current pain, worst pain, pain relief 
etc. This may make it impossible to combine study results unless strong 
assumptions are made about the equivalence of outcomes

Number needed to treat (NNT)
NNT is useful for an individual randomized controlled trial but is • 
very reliant on the actual rates in the two treatment groups. 
Meta-analysis of NNTs is problematic and there is currently no 
satisfactory way to pool NNTs 
It may informative to provide a range of NNTs that apply to different • 
baseline risks (see Smeeth et al.4)
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Summary points
When conducting a meta-analysis:

At the outset, assemble an appropriate multidisciplinary team • 
Write a rigorous protocol with detailed methods and data • 
management sections
Pilot the literature search and data extraction processes• 
Allow adequate time for each part of the meta-analysis• 
Take time to gain understanding of context-specifi c issues• 
Think about publication bias: if/why it might be there, how it might • 
affect results and conclusions

When reviewing a meta-analysis:
Check the search strategy and inclusion/exclusion criteria, choice of • 
data to pool, any evidence of publication bias, any consideration of 
study quality 
Is the analysis reasonable? Has heterogeneity been explored and • 
accounted for in the analysis if present? 

Further reading
Meta-analysis, including detecting and correcting for publication bias, is 
a very active area of statistical methodology research. Key teams in the 
UK are in Leicester (Sutton and others), Bristol (Sterne and others), and 
Cambridge (Thompson, Higgins and others). Readers who are interested 
in this area or who simply want to see current cutting edge research may 
wish to keep in touch with these teams and their international partners. 
Some useful books and articles are:

Sutton (2000)• 5 (overall coverage of subject)
Altman (2001)• 6 (overall coverage of subject)
Petitti (2000)• 7 (overall coverage of subject including cost-effectiveness)
Borenstein • et al. (2009)8 (overall coverage, updated to include recent 
developments)
Sterne (2009)• 9 (manual for doing a wide variety of meta-analysis tests 
and methods using Stata) 
Sutton and Higgins (2008)• 10 (journal article giving a concise overview of 
the current state of practice)

References
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 4 Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses – 

sometimes informative, usually misleading. BMJ 1999; 318(7197):1548–51.
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Bayesian statistics

Introduction
In this chapter we describe the Bayesian approach to statistical analysis 
in contrast to the frequentist approach. We describe how Bayesian 
methods work including a description of prior and posterior distribu-
tions. We outline the role and choice of prior distributions and how 
they are combined with the data collected to provide an updated esti-
mate of the unknown quantity being studied. We include examples of the 
use of Bayesian methods in medicine, and discuss the pros and cons of 
the Bayesian approach compared with the frequentist approach Finally, 
we give guidance on how to read and interpret Bayesian analyses in the 
medical literature.
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Bayesian statistics
Bayes theorem
Bayes theorem (see box and b Bayes’ theorem, p. 234) comes from 
work by the Reverend Thomas Bayes published posthumously in 1763.1 
It is a simple but ingenious statement about conditional probabilities and 
is widely used in all areas of statistics.

Bayes’ theorem formula
A•  and B are two events
Pr(A I B)•  means ‘the probability of A happening given that B has 
already happened’. This is often shortened to ‘the probability of A 
given B’ or ‘the probability of A conditional on B’.

Pr(A | B) = Pr(B | A) × Pr(A)
                     Pr(B)

This formula therefore allows the calculation of the probability of 
event A occurring conditional on the event B having already 
occurred.

Bayesian and frequentist methods: two philosophies 
in statistics
Bayes’ theorem is widely used in statistics and is uncontroversial. However 
the theorem has been used as the basis of an approach to statistical 
analysis and inference giving rise to two competing philosophies in 
statistics – Bayesian and frequentist methods. The two approaches differ 
in their defi nition of probability. So far in this book virtually all statistical 
analyses have been based on the frequentist paradigm. Here we summa-
rize the main differences between the two approaches.
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Bayesian and frequentist approaches
Bayesian approach

Probability is interpreted as a • degree of belief that an event will 
occur
This degree of belief comes from past data or past experience• 
Unknown quantities, such as means and proportions, follow a • 
probability distribution that expresses our degree of certainty about 
the true value at any one time
This degree of belief can be updated when we have further • 
information

Frequentist approach
Probability is the • long-run frequency of events, r, that occur in 
n trials
Probabilities are estimated directly from samples• 
Unknown quantities, such as means and proportions, are considered • 
to be fi xed although unknown, and are estimated from data with 
confi dence intervals

The controversy
The frequentist approach is arguably objective and uses only new data 
to draw conclusions whereas the Bayesian approach uses both new data 
and past data and belief to provide a fuller picture. It is the choice and 
use of past data that causes the greatest disagreement. The frequentist 
statistician argues that it is subjective and therefore may be biased. The 
Bayesian statistician argues that in practice we use our degree of belief in 
interpreting new data all of the time – ‘the sky is clear blue so it’s unlikely 
to rain’. More seriously they argue that we should use new data to add to, 
and thus update, what we currently believe.

Which approach to use?
There are some problems that can reasonably be answered by either 
approach and some for which one or other is clearly more appropriate. In 
the past statisticians have labelled themselves as frequentist or Bayesian. 
Nowadays, while many statisticians have a strong frequentist training, they 
are also schooled in Bayesian methods and so choose the most appro-
priate method for the problem at hand. The main limitation of the use of 
Bayesian methods is the availability and use of statistical software. Bayesian 
analyses cannot be done in standard statistical programs, such as SPSS, 
Stata, and SAS. Specialist software is required such as WinBUGs (see b 
Software for Bayesian statistics, p. 492), and this software is not very easy 
to use and tends to take a long time to run because the method is based 
on simulations.

Reference
1 Bayes T. An essay towards solving a problem in the doctrine of chances. Philos Trans Roy Soc 

1763; 53:370–418.
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How Bayesian methods work
Example 1
Suppose we wish to use new data to estimate the prevalence of a condi-
tion in an area. The Bayesian approach works as follows:

Before the data are obtained, the anticipated value or distribution of • 
values for the prevalence is specifi ed, perhaps using national data: this 
is called the prior
The regional data are collected and the prevalence calculated• 
The observed area prevalence is combined with the prior distribution • 
of anticipated values to ‘update’ the distribution of the true prevalence 
in the region

Fig. 14.1 How Bayesian methods work.

+
Prior

beliefs

New

data

Updated

estimate

Example 2
To illustrate how Bayes’ theorem and essentially a Bayesian approach 
updates an anticipated value according to new data, we return to an 
example used in b Chapter 7 (p. 203) and present it slightly differently.

A study investigated a new D-dimer test for the diagnosis of venous 
thromboembolism (VTE)1 in patients with clinically suspicious symp-
toms. Here we calculate the updated probability that a patient truly 
has VTE given that they are positive on the D-dimer test. This is 
Pr( VTE+/ D+) in Bayes’ theorem notation.

Pr( VTE+)•  is anticipated prevalence of VTE = 14% (0.14)
Pr( D+)•  is proportion who test positive on D-dimer = 32% (0.32)
Pr( D+/ VTE+)•  is probability of positive D-dimer test if the patient 
truly has VTE = 79% (0.79, the sensitivity)
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Example 2 (continued)

Using Bayes’ theorem the probability of having VTE is ‘updated’ using 
the test result which provides more information about the likelihood 
that they have the condition than the original prevalence alone:

Pr( VTE + | D +) = 
Pr(D+ | VTE+) x Pr(VTE+)

                                      Pr(D+)

=
 0.79 × 0.14 

= 0.346 = 34.6%
        0.32

So the ‘updated’ probability that a patient testing positive on D-dimer 
has VTE is approximately 35%.

Summary
Before the patient gets tested the best estimate of their likelihood • 
of having a VTE is the population prevalence, 14%. (Note that in this 
case the ‘population’ is patients presenting with clinical suspicion 
of VTE)
After having the test and testing positive, this information is • 
improved and updated to show their likelihood of having VTE is 
now higher, 35%
This is a simple illustration of how the Bayesian approach updates • 
estimates and provides an arguably better estimate
Note that in this example, the use of Bayes’ theorem is not • 
controversial whereas where subjective opinion is combined with 
new data, there is more debate

Terminology
The following terminology is used in Bayesian statistics and these will be 
explained in later sections in this chapter.

Prior beliefs: • Prior distribution
New data: • Likelihood
Updated estimate: • Posterior distribution

Reference
1 Kovacs MJ, Mackinnon KM, Anderson D, O’Rourke K, Keeney M, Kearon C et al. A comparison 

of three rapid D-dimer methods for the diagnosis of venous thromboembolism. Br J Haematol 
2001; 115(1):140–4.
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Prior distributions
Introduction
The prior distribution is the distribution of the unknown quantity that is 
combined with new data to provide an updated estimate of the quantity. 
There are broadly three different categories of prior distribution (taken 
from Ashby1):

A frequency distribution based on past data• 
An objective representation of what it is reasonable to believe about • 
a quantity
A subjective measure of what a particular individual actually believes• 

When there is no hard evidence on which to base the prior distribution, 
subjective judgement has to be used and this is where the approach is 
most questioned. Opinions can be elicited through informal discussion, 
expert panels, interviews or questionnaires, or through the pooling of 
data. For a fuller discussion, see Spiegelhalter et al., Chapter 5.2

‘Default’ prior distributions
The following forms of prior distribution are commonly used. For further 
discussion, see Spiegelhalter et al., Chapter 5.2

Non-informative/reference priors: • an example of this is a uniform 
distribution where all possible values for the quantity over a given 
range have equal probability. It is used when a range of values can be 
pre-specifi ed but there is no clear opinion as to which value within that 
range is most likely.
Informative-sceptical prior: • this type of prior distribution is used to 
express ‘scepticism’ about the quantity being estimated. For example 
a sceptical prior distribution may be appropriate if a large effect is 
considered to be very unlikely. The use of a sceptical prior distribution 
reduces the chances of a spuriously large effect being found. Its use 
effectively ‘shrinks back’ the size of the estimate.
Informative-enthusiastic prior: • this type of distribution is the 
counterbalance of a sceptical prior and is used when a positive effect is 
expected so that large negative effects are less likely to be found
Informative prior based on prior beliefs which are formally elicited:• 
The actual shape of an informative prior distribution varies according to 
the context but a Normal distribution is sometimes used

Sensitivity analyses
The choice of the prior distribution can have a marked effect on the fi nal 
estimate and so it is common and good practice to test the sensitivity of 
the assumptions for prior distributions by using several different forms. 
If the choice makes little difference to the updated estimate then all is 
well. If the choice does matter then a range of results may be presented 
to demonstrate the sensitivity to the prior.
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Key points on prior distributions (Spiegelhalter et al.2)
The choice is based on judgement and so a degree of subjectivity is • 
unavoidable
A range of options should be used as a test of the sensitivity of the • 
choice
The choice(s) of prior needs to be clearly justifi ed to make the • 
results credible to external consumers

References
1 Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med 2006; 25(21):3589–631.
2 Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care 

evaluation. Chichester, West Sussex: Wiley, 2004.
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Likelihood; posterior distributions
Likelihood
This is simply a summary of the evidence provided by the new data itself. 
The likelihood is combined with the prior distribution to give the updated 
posterior distribution.

Posterior distribution
This is the updated probability distribution for the unknown quantity. 
It refl ects the range of possible values for the quantity and the degree 
of belief associated with each value.

Since the posterior distribution is found by combining prior evidence 
with new information, it has less uncertainty than the prior distribution 
and so the posterior distribution will tend to be narrower than each 
of the prior distribution and the likelihood (see Fig. 14.2, which illustrates 
this).

Example
Figure 14.2 shows how the Bayesian analysis has combined the prior 
distribution (top graph) with the data (‘likelihood’, middle graph) to give 
the posterior distribution (bottom graph).

The prior distribution represents the evidence that was available • 
before the study was conducted
The ‘likelihood’ expresses the evidence from the study itself• 
The posterior distribution pools the two sources of evidence by • 
effectively multiplying the curves together1

The prior distribution has had the effect of pulling the likelihood • 
towards the null value (0) thus making the fi nal result less extreme. 
This example is discussed further in b Using Bayesian analyses in 
medicine, p. 488 

Conjugate distributions
Note that it is common for the prior and posterior distributions to be 
related, i.e. to come from the same distribution or the same family of 
distributions (e.g. both are Normal distributions but with different means 
and standard deviations). This makes the calculations more feasible.
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Example1

(a) Prior distribution

(b) Likelihood based on 23/148 v 13/163 deaths

(c) Posterior distribution

−60 −50−70 −40 −30 −20 −10 +10

% change in risk in using home treatment

Reference
1 Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR. Methods in health service research: An intro-

duction to bayesian methods in health technology assessment. BMJ 1999; 319(7208):508–12.

Fig. 14.2 Illustration of how Bayesian analysis combines a prior distribution 
(top graph) with the data (‘likelihood’, middle graph) to give the posterior 
distribution (bottom graph).
Reproduced from BMJ, Spiegelhalter et al, 319, 508 © 1999 with permission from the BMJ 
Publishing Group Ltd.
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Summarizing and presenting results
Estimates
A single measure of the middle of the posterior distribution, such as the 
mean or median, is commonly presented as a summary. Other estimates 
are possible for other probability distributions such as the standard devi-
ation and the interquartile range. The choice depends on the shape of 
the distribution and the context. 

Posterior probabilities
The posterior distribution is a probability distribution and therefore prob-
abilities can be calculated in the same way as for frequency distributions 
(b Chapter 7, p. 203). 

One of the strengths of the Bayesian approach is that it is therefore 
possible to use the posterior distribution to calculate and present the 
probability for a particular range of values for the quantity being estimated. 
For example the posterior distribution for the relative risk in a trial could 
be used to estimate the probability that the relative risk is greater than 
1 (i.e. shows effi cacy). An example later in this chapter, Paroxetine and 
suicide attempts, illustrates this (b Using Bayesian analyses, p. 488).

Credible intervals (posterior interval)
It is common to present 95% credible intervals for a posterior estimate. 
This range is taken directly from the posterior probability distribution and 
it represents the range within which the true value lies with 95% prob-
ability. This is slightly different to the interpretation of a 95% confi dence 
interval as shown below. Bayesians argue that the 95% credible interval is 
what we really want to know about an estimate, and that the 95% con-
fi dence interval while being taken informally to mean the same thing, is 
not technically the same at all since confi dence intervals are based on the 
sampling distribution of the quantity not the probability distribution. 

These intervals are straightforward to calculate if the posterior 
probability distribution is unimodal and symmetrical, but if this is not the 
case there is no single unique interval. Further details are omitted here 
but can be found in Gelman et al., Chapter 2,1 and Spiegelhalter et al., 
Chapter 3.2
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95% credible interval, 95% confi dence interval: strict defi nition

There is 95% probability that the • true value lies within the 95% 
credible interval 
There is a 95% probability that a • 95% confi dence interval contains 
the true value

The difference between these two is that in frequentist analyses it is 
assumed that the true value is fi xed and so either does or does not fall 
within the  95% confi dence interval. In the long run, if it was possible to 
compute many 95% confi dence intervals from a different sample, 95% 
of them would contain the true value. This is this sense in which a 
probability of 95% is assigned to the likelihood that the interval contains 
the true value.

While some statisticians get very irritated when confi dence 
intervals are described as if they were credible intervals, it 
could be argued that the subtlety of the difference is of no great 
practical importance in interpreting the data.

Signifi cance tests
Note that these have no formal place in the Bayesian framework since 
the emphasis is on a distribution of estimates rather than providing a test 
against a single value. As shown opposite, posterior probability distribu-
tion can be used to calculate the probability that the true value takes 
specifi c values – such as in the example quoted, the probability that a rela-
tive risk is greater than 1.0. Bayesians argue that this form of information 
is what is needed rather than a yes/no approach that signifi cance testing 
gives. Frequentists would tend to reply to this that that is why results 
should be presented as estimates and 95% confi dence intervals! So both 
camps tend to agree that a single value, or a test against a single value by 
itself, is of limited usefulness.

References
1 Gelman A, Carlin John B, Stern Hal S, Rubin DB. Bayesian data analysis. 2nd ed. Boca Raton, 

FL: Chapman & Hall/CRC, 2004.
2 Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care 

evaluation. Chichester, West Sussex: Wiley, 2004.
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Using Bayesian analyses in medicine
Introduction
Bayesian methods are now used in many areas of research in medicine 
including:

Observational studies• 
Design, monitoring and analysis of trials• 
Meta-analyses• 
Missing data imputation• 
Decision making• 
Health economics• 

Bayesian methods can be used in many of the same situations as 
frequentist methods, such as:

Estimating a single quantity• 
Simple regression analysis• 
Multifactorial regression with continuous, binary, Poisson, time-to-• 
event outcomes
Multilevel models• 

Sometimes a Bayesian analysis is conducted as a secondary analysis after 
unexpected results have been shown using a frequentist analysis, as shown 
in GREAT.

Example: GREAT – a Bayesian re-analysis

The original GREAT (Grampian Region Early Anistreplase Trial) exam-
ined the effect of thrombolytic therapy, anistreplase given at home in 
patients with suspected myocardial infarction. The trial included 311 
patients and using a frequentist analysis reported a highly signifi cant and 
large benefi cial effect of the therapy on mortality, 13/163 (8%) versus 
23/148 (16%), P=0.04.1

This effect size was equivalent to an approximately 50% reduction in 
mortality. This fi nding was challenged for several reasons including:

It was unexpectedly large• 
The trial was quite small• 
An unpublished bigger European trial found a more modest benefi cial • 
effect
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Pocock and Spiegelhalter conducted a Bayesian re-analysis of the • 
trial.2 At that time it was believed that thrombolytic therapy was 
unlikely to provide a benefi t greater than 40% and that a reduction 
of about 15–20% was very plausible 
They therefore constructed a prior distribution to express this • 
opinion and combined the prior with the likelihood based on the 
observed data
The prior, likelihood, and posterior distributions are shown in • 
Figure 14.2
The Bayesian analysis showed that the best estimate of the reduction • 
in mortality was 25% compared with the 49% reported in the 
frequentist analysis. This reinforced the conclusion that the trial 
results were over-optimistic, a view that was confi rmed in later 
studies
This example shows how in the presence of an unexpected result, • 
a Bayesian analysis can be successfully used to pool prior evidence 
with the new evidence to provide an arguably more reasonable fi nal 
estimate

References
1 GREAT group. Feasibility, safety, and effi cacy of domiciliary thrombolysis by general practition-

ers: Grampian region early anistreplase trial. GREAT Group. BMJ 1992; 305(6853):548–53.
2 Pocock SJ, Spiegelhalter DJ. Domiciliary thrombolysis by general practitioners. BMJ 1992; 

305(6860):1015.
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Using Bayesian analyses (continued)
Paroxetine and suicide attempts: a Bayesian analysis

This meta-analysis addressed the issue of whether antidepressant drugs 
led to increased suicides in adults.1 The authors included unpublished 
data that had not been previously included in meta-analyses. They cor-
rected for duration of medication and placebo treatment and performed 
a Bayesian analysis. There were 7 suicide attempts in patients taking the 
drug and 1 in a patient taking placebo.

The prior distribution was assumed to be gamma (a type of • 
distribution which for large numbers is similar to Normal)
Three different prior distributions were used to test the sensitivity • 
of the results to the prior assumptions, a pessimistic prior, a slightly 
pessimistic prior, and  a slightly optimistic prior (Fig. 14.3) 
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The outcome was a ratio of the rate of suicide attempts in each • 
treatment group. These are shown on a log scale and values greater 
than 0 indicate higher probability of suicide attempts for paroxetine
The pessimistic prior (solid line) was based on prior evidence and • 
referenced in the paper
The slightly pessimistic prior (dashed line) and the slightly optimistic • 
prior (dashes and dots) were also based on previous studies

Fig. 14.3 Three different prior distributions used in a meta-analysis of antidepres-
sant drugs and suicide in adults.
From Aursnes et al.1
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Posterior distributions

The three posterior distributions shown below (Aursnes • et al.1) 
relate to the three prior distributions shown opposite
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The bulk of each distribution is greater than 0, the null value, showing • 
that the evidence is weighted in favour of an adverse effect of 
paroxetine on suicide risk in this group
The authors reported that these distributions corresponded to the • 
following: paroxetine is associated with an increased rate of suicide 
attempts (relative risk=2.46, pessimistic prior; relative risk=2.20, 
slightly pessimistic prior; relative risk=2.34, optimistic prior, after 
anti-logging the values in the graphs)
The authors concluded that the Bayesian approach supported the • 
results of recent meta-analyses and that they suggested an increased 
risk of suicidal activity in adults taking certain antidepressant drugs

Reference
1 Aursnes I, Tvete IF, Gaasemyr J, Natvig B. Suicide attempts in clinical trials with paroxetine 

randomised against placebo. BMC Med 2005; 3:14.

Fig. 14.4 Three posterior distributions corresponding to the three priors used in a 
meta-analysis of antidepressant drugs and suicide in adults.
From Aursnes et al.1
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Software for Bayesian statistics
Introduction
This section describes in high-level terms the software that can be used to 
do Bayesian analysis and also explains what some of the terminology used 
in the computing means. The technical details are less important to those 
who only need to interpret (rather than perform) Bayesian analyses but 
can be helpful to be aware of the terms.

Computing the posterior distribution
In the more straightforward situations as when estimating a single quan-
tity, it may be possible to compute the posterior distribution directly using 
algebra. However, many situations are more complex and solutions are 
harder to obtain because integrals that are necessary to do the calcula-
tions cannot be evaluated mathematically. Until recently, such situations 
could not be resolved and so the practical use of Bayesian methods was 
limited. However, enormous progress has been made more recently using 
powerful computers to carry out simulations known as Markov Chain 
Monte Carlo (MCMC) methods, which makes much more complex 
analyses possible. 

Simulations
MCMC methods are a set of techniques to evaluate integrals or sums 
by simulation rather than by algebra. A simple example of how a type of 
simulation can be used instead of a formula is when we toss a coin, say 10 
times and want to know how likely we are to get 8 or more heads. We 
could use the binomial formula (b Binomial distribution: formula, p. 212) 
or we could actually toss a coin 10 times, many times over as a simulation 
to see how often the 10 tosses gives 8 or more heads We could use a 
computer to do this too quite easily with a random number generator 
(see Spiegelhalter, Chapter 3,1 for a worked example). Simulations work 
in this way, such that many repeats are done to get to the long term and 
stable solution. 

WinBUGS
(M http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)
The BUGS (Bayesian inference Using Gibbs Sampling) is a statistical 
program developed at the MRC Biostatistics Unit in Cambridge and 
more recently with Imperial College, and with other partners joining to 
provide extra functions. WinBUGS is available free of charge but as the 
website says, it comes with a health warning that its use is relatively easy 
but like many statistical programs needs a high degree of understanding of 
Bayesian methods to do the right thing and interpret the results correctly.

Gibbs sampling
This is a particular Markov chain algorithm that has been found useful in 
multidimensional problems and is built into WinBUGS.

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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New developments
Software to carry out  Bayesian analysis is developing all the time, often 
tailored for a particular situation. Researchers often make their program-
ming code available freely to others and in this way the set of programs 
grows. For example Keming Yu and Craig Reed are currently writing code 
to do Bayesian quantile regression and will make this available to the whole 
research community (Brunel University, personal communication, 2009).

Reference
1 Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care 

evaluation. Chichester, West Sussex: Wiley, 2004.
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Reading Bayesian analyses in papers
Bayesian checklist
Sung and colleagues have generated a checklist of seven items (ROBUST) 
that should be included when a Bayesian analysis is reported.1 These are 
helpful in interpreting a Bayesian analysis.

ROBUST (Reporting Of Bayes Used in clinical STudies)
The box below lists the items included in ROBUST. The checklist can 
be scored to provide a measure of the quality of reporting, but here it is 
given as a guide to what points to check when reading an article where 
Bayesian methods have been used.

1. Prior distribution: specifi ed
2. Prior distribution: justifi ed
3. Prior distribution: sensitivity analysis
4. Analysis: statistical model
5. Analysis: analytical technique
6. Results: central tendency
7. Results: standard deviation or credible interval 

Each point is now expanded, and the issues that are important to check 
and understand highlighted.

Prior distribution: specifi ed
It is important to know what form the prior distribution took and 
its parameters (e.g. Normal distribution with mean 0 and standard 
deviation 5).

Prior distribution: justifi ed
Here it is important to know where the data for the prior distribution 
came from (e.g. a previous review, cited papers, cited experts).

Prior distribution: sensitivity analysis
It is good practice to repeat the analyses with different prior distributions 
unless the form of the prior is certain. We therefore need to know how 
the results varied with the different choices of prior distribution to gauge 
the range of true values that might be implied by the analysis.

Analysis: statistical model
As with frequentist analyses, it is important to know what model was 
fi tted, such as what the outcome and predictor variables were, how they 
were treated (e.g. continuous or categorized), and the type of model 
(e.g. random effects).

Analysis: analytical technique
What software was used and how it was implemented (e.g. the choice of 
starting values for the simulations and the number of runs).
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Results: central tendency
The main results presented as a mean, median, etc., as appropriate and 
if sensitivity analyses were performed how these varied according to the 
assumed prior distribution.

Results: standard deviation or credible interval
Some measure of spread for the main results is needed and again it is 
helpful to know how this varied with choice of prior.

Key factors still apply
Frequentist analyses will be familiar to many readers but Bayesian analyses 
may be less so. In many situations a Bayesian analysis is interpreted in 
a very similar way to a frequentist analysis. Hence, in addition to the 
specifi cs listed in the ROBUST guidelines, the same general principles 
apply for all analyses:

What is the main question?• 
What is the study design and is it reasonable?• 
What data were collected?• 
What analyses were done?• 
What results were found?• 
What do the results mean?• 

Reference
1 Sung L, Hayden J, Greenberg ML, Koren G, Feldman BM, Tomlinson GA. Seven items were 

identifi ed for inclusion when reporting a Bayesian analysis of a clinical study. J Clin Epidemiol 
2005; 58(3):261–8.
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Bayesian methods: a summary
Comparison of Bayesian and frequentist methods 
Table 14.1 is adapted from Spiegelhalter et al.1 and gives a helpful summary 
of the two approaches.

Table 14.1 Brief comparison of Bayesian and frequentist methods in 
randomized trials

Issue Frequentist methods Bayesian methods

Prior information 
other than that in 
the study being 
analysed

Informally used when 
choosing a model/form 
of analysis

Used formally by specifying a 
prior probability distribution

Interpretation of 
the parameter of 
interest

A fi xed unknown value An unknown quantity which can 
have a probability distribution

Basic statistical 
question

‘How likely are 
the data, given a 
particular value of 
the parameter?’

‘How likely is the particular value 
of the parameter given the data?’

Presentation of 
results

P values, estimates, 
confi dence intervals

Plots of posterior distribution 
of the parameter, calculation of 
specifi c posterior probabilities of 
interest, and use of the posterior 
distribution in formal decision 
analysis. Expected value and 
credible intervals

Dealing with 
subsets in trials

Adjusted P values 
(e.g. Bonferroni)

Subset effects shrunk towards 
zero by a ‘sceptical’ prior

Adapted from Spiegelhalter et al. © 1999. Used with permission from the BMJ Publishing 
Group Ltd.
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Strengths of Bayesian methods
They incorporate prior information – this is something we commonly • 
do in everyday life but is hidden in frequentist analyses
They allow healthy scepticism to be incorporated to guard against • 
unlikely results, and to avoid false positive fi ndings
They provide a probability distribution for parameters of interest which • 
is what researchers often want
They provide a distribution of possible values for all parameters to • 
build in uncertainty in a way that frequentist methods do not
The interpretation is more intuitive than frequentist methods• 
They place less reliance on parameters following a Normal distribution • 
as the sample size increases, as many frequentist methods do, and so 
can be safely used in wider range of situations

Weaknesses
The choice of prior distributions affects the results but may be • 
subjective or controversial
They are computationally complex and require special software and • 
specifi c expertise to conduct the analyses

Notes
For large datasets, a frequentist analysis may give similar results to • 
a Bayesian analysis since the prior distribution is less infl uential
In small datasets, extreme fi ndings can be tempered by a Bayesian • 
analysis

Further reading
Introductory articles• 1–3

In-depth books and monographs• 4–6

Review of Bayesian statistics in medicine• 7
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Analysis of variance See One-way analysis of variance (p. 280) and 
Two-way analysis of variance (p. 412)
Bayes’ theorem A formula that allows the reversal of conditional prob-
abilities (see b Bayes’ theorem, p. 234)
Bayesian statistics A statistical approach based on Bayes’ theorem, where 
prior information or beliefs are combined with new data to provide estimates 
of unknown parameters (see b Chapter 14, Bayesian statistics, p. 477)
Bias Any factor that moves the fi ndings of a study away from the truth
Binary data Data where there are only two possible values such as 
survived/died; also known as dichotomous data
Blinding in a randomized controlled trial When the treatment alloca-
tion is concealed from either the subject or the assessor or both (see 
b Blinding in RCTs, p. 14)
Box and whisker plot A graph that depicts the minimum and maximum 
(whiskers), lower and upper quartiles (box) and the median (horizontal 
line in the box) for a set of data (see b Graphs: box and whisker plot, 
dot plot, p. 196)
Case–control study Observational study that starts with cases with a 
disease and compares them with controls without the disease to investi-
gate possible risk factors (see b Case-control study, p. 24)
Categorical data Data where each individual falls into one of a number 
of separate categories 
Census A study that includes the whole population rather than a sample
Chi-squared goodness of fi t test A statistical test used to investigate 
whether a frequency distribution follows a specifi c theoretical distribution 
(see b Chi-squared goodness of fi t test, p. 364)
Chi-squared test A statistical test used to investigate the association 
between two categorical variables (see b Chi-squared test, p. 262)
Cluster analysis A statistical method used to identify groups or clusters 
of individuals who have common features in terms of known variables 
(see b Cluster analysis, p. 444)
Cluster randomization When groups of individuals are allocated to 
treatments so that all subjects in a group receive the same treatment
Cohort study Observational study that starts with a sample of individuals 
who are disease-free and measures possible causal factors at baseline 
and over time. The cohort of subjects is followed and their disease status 
is observed to investigate which factors are linked to the disease (see 
b Cohort studies, p. 28)
Confi dence interval (CI) A range of values that indicates the precision 
of an estimate; for a 95% CI we can be 95% confi dent that the interval 
contains the true value (see b Confi dence interval for a mean, p. 242)
Continuous data Data that lie on a continuum and so can take any value 
between two limits
Cox proportional hazards regression A multifactorial regression model 
used with a time-to-event outcome (see b Cox proportional hazards 
regression, p. 428)
Cronbach’s alpha A statistic used to measure the degree of internal con-
sistency between items in a questionnaire (see b Internal consistency: 
Cronbach’s alpha, p. 93)
Crossover trial A single group study where each patient receives each of 
two or more treatments in turn so that they act as their own control (see 
b RCTs: parallel groups and crossover designs, p. 16)
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Degrees of freedom (DF or df) A quantity used in statistical testing 
and modelling that is related to the size of the sample and the number of 
parameters that have been estimated
Dichotomous data See binary data
Direct standardization Gives a standardized mortality rate in the 
comparison population that can then be directly compared with the rate 
in the observed population (see b Direct standardization, p. 372)
Discrete data Data that do not lie on a continuum and can only take 
certain values, usually counts (integers)
Dummy variables Used in regression modelling to enable a categorical 
predictor variable to be included, by converting a variable with n cat-
egories into n–1 binary variables, where one category is the reference 
category (see b Dummy variables, p. 397)
Equivalence trial A trial that aims to see if a new treatment is no better or 
worse than an existing one (see b Superiority and equivalence trials, p. 20)
Factor analysis A statistical method used to identify unknown underlying 
factors within a set of data (see b Factor analysis, p. 445)
Fisher’s exact test A statistical test that can be used to investigate the 
association between two categorical variables when the sample is small 
(see b Fisher’s exact test, p. 266)
Forest plot A graph used to display individual study estimates and 
confi dence intervals, and the pooled estimate and confi dence interval in 
a meta-analysis (see b Presenting meta-analyses, p. 462)
Frequentist statistics A statistical approach where the data alone are 
used to provide estimates of unknown parameters
Funnel plot A simple graphical method for exploring the results from 
studies to see if publication bias might be present (see b Detecting 
publication bias, p. 466)
Generalized estimating equations (GEEs) An alternative approach 
to multilevel modelling for data with a hierarchical structure or clusters, 
or serial measurements, that gives population average estimates (see 
b Generalized estimating equations (GEEs), p. 438)
Gold standard test A diagnostic test that is regarded as defi nitive, i.e. it 
gives the correct answer (see b Sensitivity and specifi city, p. 340)
Hazard ratio In survival analysis, the ratio of hazards or risks of outcome 
in two groups (see b Chapter 12, p. 428)
Heterogeneity Where there is statistical variability between estimates 
such as may be found in a meta-analysis (see b Kappa for inter-rate 
agreement, p. 454)
Histogram A graph depicting the frequency distribution of a variable, with 
the area of each rectangle representing the proportion of subjects lying in 
the category (see b Graphs: histogram, stem and leaf plot, p. 194)
Incidence The number of new cases of a given condition occurring within 
a specifi c time period
Independent data A set of separate data values that are not related to 
each other such as the height of each man in a random sample of men 
(see b Independence: data and variables, p. 204)
Indirect standardization Gives the standardized mortality ratio (SMR), 
which is the ratio of the observed number of deaths in the comparison 
population and the number expected if that population had the same 
age-specifi c death rates as the standard population (see b Indirect stand-
ardization, p. 374)
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Intention to treat analysis Statistical analysis where patients are 
analysed in the treatment group to which they were originally randomly 
allocated even if they did not actually receive that treatment (see b 
Intention to treat analysis, p. 22)
Interquartile range The range of values that includes the middle 50% of 
values when they are arranged in ascending order (see b Summarizing 
quantative data, p. 183)
Interventional study A study investigating the effect of a treatment by 
deliberately exposing individuals to the treatment and observing its effects 
(see b Interventional studies, p. 6) 
Kaplan–Meier curve A graph demonstrating survival probabilities over 
time (see b Kaplan-Meier curves, p. 320)
Kappa A statistic that measures the agreement between two raters where 
responses can fall into any of a number of categories (see b p. 354)
Life table A table displaying the mortality experience of a population 
(see b Life tables, p. 370)
Likelihood ratio A measure of the performance of a diagnostic test; 
equal to sensitivity/(1 – specifi city) (see b Chapter 9, p. 346)
Logistic regression A multifactorial regression model used with a binary 
outcome (see b Logistic regression, p. 420)
Logrank test A statistical test used to compare time-to-event data in two 
or more groups (see b Logrank test, p. 322)
Mann Whitney U test See Wilcoxon signed rank test
McNemar’s test A statistical test used to investigate the association 
between two paired proportions (see b McNemar’s test for paired 
proportions, p. 276)
Meta-analysis A statistical analysis which combines the results of several 
independent studies examining the same question (see b Chapter 13, 
Meta-analysis, p. 447)
Multifactorial methods Statistical models fi tted to datasets with one 
outcome variable and several predictor variables; used to disentangle 
effects
Multilevel models Statistical modelling approach for data with an hierar-
chical structure or clusters, or serial measurements; sometimes referred 
to as random effects or mixed models (see b Multilevel models, p. 436)
Multiple regression A multifactorial regression model used with a con-
tinuous outcome (see b Multiple regression, p. 406)
Mutually exclusive events Two or more events that cannot occur 
together, such as death and survival
Negative predictive value The proportion of those found negative on 
a diagnostic test who are truly negative (see b Calculations for sensitivity 
and specifi city, p. 342)
Non-parametric tests Statistical tests which do not require the data to 
follow a given probability distribution; include tests based on ranks
Normal distribution A continuous probability distribution with a 
symmetrical bell shape, which is followed by many naturally occurring 
variables (see b Normal distribution, p. 222)
Null hypothesis The baseline hypothesis that is tested in a statistical 
signifi cance test and which is usually of the form ‘there is no difference’ or 
‘there is no association’
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Number needed to harm The number of patients who need to be 
treated in order that one additional patient has a negative outcome (see 
b p. 368)
Number needed to treat The number of patients who need to be 
treated in order that one additional patient has a positive outcome (see 
b Number needed to treat, p. 366)
Observational study A study in which subjects are observed, with 
exposures and outcomes measured, without any intervention by the 
researcher
Odds The probability of an event occurring divided by the probability of 
it not occurring
Odds ratio (OR) A measure of the difference in odds between two 
groups, calculated by dividing the odds in one group by the odds in 
another group
One-way analysis of variance A statistical test used to compare the 
means from three or more independent samples (see b One-way 
analysis of variance, p. 280)
P value The probability, given that the null hypothesis is true, of 
obtaining data as extreme or more extreme than that observed (see b 
P values, p. 248)
Parallel group trial A trial in which subjects are allocated to receive one 
of two or more possible treatments and the comparison of different treat-
ments is made between treatment groups (see b RCTs: parallel groups 
and crossover designs, p. 16)
Pearson’s correlation A measure of the strength of linear relationship 
between two continuous variables (see b Pearson’s correlation, p. 290)
Pilot(ing) A small-scale study conducted prior to the main study to check 
feasibility and/or make estimates of key parameters that are needed to 
design the main study
Placebo An inert treatment which is indistinguishable from the active 
treatment
Poisson regression A multifactorial regression model used to model 
rates (see b Poisson regression, p. 432)
Positive predictive value The proportion of those found positive on 
a diagnostic test who are truly positive (see b Calculations for sensitivity 
and specifi city, p. 342)
Posterior distribution A probability distribution obtained by combining 
prior evidence with new information (see b Likelihood; posterior distri-
butions, p. 484)
Power The probability that a statistical test will fi nd a signifi cant difference 
if a real difference of a given size exists, i.e. the null hypothesis is not true
Predictor variable In regression analysis, a variable which is used to 
predict the value of an outcome variable
Prevalence The proportion of individuals with a condition within a 
specifi c population at a given time (point prevalence) or over a given time 
period (period prevalence)
Principal components analysis A statistical method used to reduce 
a dataset with many inter-correlated variables to a smaller set of uncor-
related variables that explain the overall variability almost as well (see b 
Principle components analysis, p. 441)
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Prior distribution The distribution of prior beliefs or existing information 
that are combined with new data to provide the posterior distribution in 
Bayesian statistics (see b Prior distributions, p. 482)
Probability The proportion of times an event happens in the long run, 
which can be estimated from a proportion calculated in a sample
Publication bias A bias that occurs when the papers which are published 
on a topic are an incomplete subset of all the studies which have been 
conducted on that topic (see b Publication bias, p. 464)
Qualitative research Research that generates non-numerical data which 
are not analysed using statistical methods, for example recorded in-depth 
interviews may be examined to identify common themes
Quantitative data Data which can be expressed numerically and are 
usually either measured or counted
Quantitative research Research that generates numerical data which 
can be analysed using statistical methods
Range The interval between the minimum and maximum value
Rank correlation A non-parametric measure of the relationship between 
two variables, using the ranks of the data rather than the data values 
themselves (see b Rank correlation, p. 312)
Receiver operating characteristic (ROC) curve A graph plotting the 
sensitivity against 1–specifi city for a diagnostic test at different cut-off 
points (see b Receiver operating characteristic (ROC) curves, p. 348)
Relative risk (RR) A measure of the difference in risk between two 
groups, calculated by dividing the risk in the exposed group by the risk in 
the unexposed group (also known as risk ratio)
Risk difference A measure of the absolute difference in risk between 
two groups
Risk ratio A measure of the difference in risk between two groups, 
calculated by dividing the risk in the exposed group by the risk in the 
unexposed group (also known as relative risk)
Sample A sub-group of subjects selected from a population
Selection bias A statistical bias introduced by the way in which subjects 
are selected for a research study
Sensitivity The proportion of those who have the disease who are 
correctly identifi ed by the diagnostic test as positive (see b Sensitivity 
and specifi city, p. 340)
Sensitivity analysis A way of testing assumptions made in statistical 
analyses by doing several analyses based on different assumptions, and 
comparing the results
Serial data Repeated measurements taken on an individual or individuals 
over time (see b Serial (longitudinal) data, p. 378)
Signifi cance level The probability that a statistical test rejects the null 
hypothesis when no real difference exists, i.e. the null hypothesis is true 
(type 1 error)
Simple linear regression A statistical method to estimate the nature 
of the linear relationship between two continuous variables (see b 
Simple linear regression, p. 296)
Skewed data Data that do not follow a symmetrical distribution (see b 
Graphs: shapes of distributions, p. 198)
Specifi city The proportion of those who do not have the disease 
who are correctly identifi ed by the diagnostic test as negative (see b 
Sensitivity and specifi city, p. 340)
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Standard deviation (SD) A measure of dispersion used for continuous 
data; is equal to the square root of the variance (see b Summarizing 
quantitative data, p. 182)
Standard error (SE) A measure of precision of an estimated quantity 
that is equal to the standard deviation of the sampling distribution of the 
quantity
Standardization A method of adjusting data to enable mortality rates 
to be compared between populations with different age structures (see 
b Other statistical methods, p. 353)
Statistically signifi cant This is when the P value from a signifi cance test 
is less than the agreed signifi cance level, usually P<0.05
Stem and leaf plot A graph which uses the data values themselves to 
depict the shape of a frequency distribution (see b Graphs: histogram, 
stem and leaf plot, p. 195)
Subject An individual from whom data are obtained; in medical research 
this individual is usually a patient
Superiority trial A trial which aims to see if one treatment is better than 
another (see b Superiority and eqivalence trials, p. 20)
Systematic review A literature review which aims to identify and 
appraise all published research answering a given question
t test A statistical test used to compare the means from two independent 
samples (see b t test for two independent means, p. 252)
Transformation A function applied to a dataset to better fi t a specifi c 
probability distribution, for example applying a logarithmic transformation 
to skewed data to make it fi t a Normal distribution (see b Transforming 
data, p. 330)
Two-way analysis of variance A statistical method used to investigate 
the effects of two factors on a continuous outcome (see b Transforming 
data, p. 412)
Type 1 error Getting a signifi cant result in a sample when the null hypoth-
esis is in fact true in the underlying population (‘false signifi cant’ result)
Type 2 error Getting a non-signifi cant result in a sample when the 
null hypothesis is in fact false in the underlying population (‘false non-
signifi cant’ result)
Variable A quantity that is measured or observed in an individual and 
which varies from person to person
Variance See standard deviation
Washout period The time interval between the administration of dif-
ferent treatments in subjects in a crossover trial that prevents there being 
any carry-over effects of the current treatment when the next treatment 
starts
Wilcoxon matched pairs test A statistical test comparing ordinal data 
from paired samples (see b Wilcoxon matched pairs test, p. 308)
Wilcoxon signed rank test A statistical test comparing ordinal data 
from two independent groups; equivalent to the Mann Whitney U test 
(see b Wilcoxon two-sample signed rank test (man whitney U test), 
p. 303)
z test for proportions A statistical test used to compare proportions 
from two independent samples (see b z test for two independent 
proportions, p. 260)
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Fisher’s exact test 266, 268
fi xed effects

estimates, 
meta-analyses 458

meta-analysis 456
multilevel models 436

fl owcharts 136–7
follow-up

cohort studies 28, 30–1
data collection forms 76
intention to treat 

analysis 22
merging datasets 110

forest plots
meta-analyses 462–3
number needed to 

treat 368–9
formal data monitoring 122

forward stepwise 
multifactorial 
methods 398

F ratio 280, 284
frequency distribution 190, 

192
data checking 118

frequentist methods 478–9, 
487, 496

funding issues
educational programme, 

research conducted 
as part of an 3

research questions 4
funnel plots, publication 

bias 466–7, 470

G
Gabriel’s test 286
gamma distribution 233
generalized estimating 

equations (GEEs)
cluster samples 391
multiple variables 

per subject 438
serial data 387

generalized linear models
deviance 418
multiple variables per 

subject 404
geometric mean 188, 190

calculation 188–9
Gibbs sampling 492
glossary 500
gold standard tests 340
goodness of fi t tests, 

Poisson distribution 218
graphics, software 

packages 161
graphs 146, 194
group sequential approach, 

early stopping of 
trials 124

guidelines for research 
articles 148, 150

H
half-Normal 

distribution 233
harmonic mean 188, 190

calculation 188–9
Haybittle–Peto rule 124
hazard, Cox regression 428
hazard ratio (HR), Cox 

regression 428–9
example 430

Helsinki, Declaration of 9
benefi ts resulting from 

research, patients’ 
rights to 13
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comparison group, 
choice of 8

consent 12
heterogeneity, meta-

analysis 454–6
hierarchical models 437
histograms 194

data checking 120
historical controls, 

interventional studies 6
hypothesis testing, by 

multiple regression 408

I
I2 statistic 455, 458
IMRaD format 130–1, 

134–8
independent data and 

variables 204, 388
generalized estimating 

equations 438
simple linear 

regression 296
independent patient data 

(IPD) meta-analysis 472
indirect 

standardization 372, 374
infl uential data points, 

multifactorial 
methods 400

informal reviews 448
informative-enthusiastic 

priors 482
informative priors based on 

formally elicited prior 
beliefs 482

informative-sceptical 
priors 482

informed consent 12
intention to treat (ITT) 

analysis 22
change of treatment 22
meta-analysis 474
missing data 22–3

interactions
logistic regression 426
multiple regression 414

internal consistency 93
International Committee of 

Medical Journal Editors 
(ICMJE)

publication bias, 
reducing 465

statistical review 148
interquartile range 183, 190

calculation 186
inter-rater agreement see 

kappa for inter-rater 
agreement

interval scales 178–9
interventional studies

outcomes 44

research design 6
intraclass correlation 

coeffi cient 94
Bland–Altman 

method 363
sample size calculation 68

introductions, journal 
articles 130–1, 134

CONSORT 
guidelines 299

J
joining datasets 110–11

examples 112
journal articles and papers

abstracts 132
Bayesian statistics 494
guidelines 150
IMRaD format 130–1, 

134–8
presenting statistics 140–6
producing 130
publication bias 464
publication process 148
statistical problems 153

K
Kaplan–Meier curves 320
kappa for inter-rater 

agreement 354–6
cautions 359
confi dence interval 356–7
extensions 358
interpreting 356
signifi cance test 357

Kendall’s tau 312–14
key variables, checking 116
Kruskal-Wallis test 275

L
language issues, publication 

bias 464
last observation carried 

forwards (LOCF) 
method 402

leading questions 82, 84
least squares method 296
life expectancy 371
life tables 370
likelihood

Bayesian statistics 481, 
484–5

early stopping of 
trials 124

likelihood ratio (LR) 346
Likert scales 96

numerical rating scales 98
scoring and statistical 

analysis of data 97

limits of agreement, 
Bland–Altman 
method 94, 361

interpretation 362
linear regression

publication bias 466, 
470–1

simple 288–9, 296, 404
linear terms, multiple 

regression 416
linear weights, kappa 358
link function, generalized 

linear models 404
literature reviews 448
logarithmic 

transformation 330–1
applications 336
back-transforming 330–1, 

336–7
logistic regression 420

conditional 427
and diagnostic studies, 

links between 350
examples 422
extensions 426
ordinal 426
polytomous 426
and receiver operating 

characteristic 
curves 424

logit transformation 420
lognormal distribution 233
logrank test 322–6
logs of statistical 

analyses 160
log-transformed data 188
longitudinal data see serial 

(longitudinal) data
longitudinal studies, 

cross-sectional studies 
misinterpreted as 32

lower quartile (LQ) 183
calculation 371

M
McNemar’s test for paired 

proportions 276
conditional logistic 

regression 427
main effects, multiple 

regression 414
Mann Whitney U test 303

presenting statistics 141
Markov Chain Monte Carlo 

(MCMC) methods 492
master datasets 110
matched controls, 

case–control studies 24
mean 182

arithmetic 182, 184, 
188, 190

confi dence interval 242



512 INDEX

mean (Cont.)
geometric 188–90
harmonic 188–90
large sample 244
Poisson distribution 218
presenting statistics 142
sample size 58, 64
sampling distribution of 

the 241–2
standard error 242
transforming data to 

compare means 332
measurement error 82
median 182, 190

calculation 186
menu-driven software 

packages 156
merging datasets 110–11

example 113
meta-analyses 447–8, 475

challenges 474
combining estimates 

in 452
fi xed effects 

estimates 458
formulae 458, 461
heterogeneity 454–6
inconclusive research 62
independent patient 

data 472
nature of 448
number needed to 

treat 368–9
presenting 462
protocol 448
publication bias 464
quality 449
random effects 

estimates 460
reasons for carrying 

out 448
research questions 5
sample size 449
searching for studies 

450
meta-regression 456
methods, journal 

articles 130–1, 134–5
CONSORT 

guidelines 299
minimization, randomized 

controlled trials 11
missing at random (MAR) 

data 402
multilevel models 439

missing completely at 
random (MCAR) 
data 402

generalized estimating 
equations 439

missing data
coding 79
data entry 104–5

checks 116
data transfer between 

software packages 168
generalized estimating 

equations 439
intention to treat 

analysis 22–3
meta-analysis 474
multifactorial 

methods 400, 402
multilevel models 439
repeated measures 

analysis of 
variance 386

serial data 384, 386–7
software packages 161, 

168
summarizing data 174
types of 402

missing not at random 
(MNAR) data 402

mixed model see multilevel 
modelling: serial data

mode 188
mortality rates 370
multifactorial (multivariable) 

modelling 394–6
challenges 400
missing data 402
model selection 398
sample size calculation 68

multilevel modelling 436
cluster samples 391
missing data 439
serial data 386–7

multiple comparisons 286
multiple correlation 

coeffi cient 418
multiple imputation of 

missing values 403
multiple observations per 

subject, analysing 377
area under the 

curve 382
cluster samples 388–90
serial data 378–86

multiple regression 406
and analysis of 

variance 412
examples 408–10
fi t of the model 418
linear and non-linear 

terms 416
main effects and 

interactions 414
missing data 161
sample size 419

multiple variables per 
subject, analysing 393–4

cluster analysis 444
Cox proportional hazards 

regression 428
factor analysis 445

generalized estimating 
equations 438

generalized linear 
models 404

logistic regression 420
missing data 402
multifactorial 

methods 396–400
multilevel models 436
multiple regression 

406–19
Poisson regression 432–3
principal components 

analysis 441–8
multivariate 

modelling 394–5
mutually exclusive 

events 208

N
natural experiments 7
negative binomial 

distribution 233
negative binomial 

regression 433
negatively skewed data 199
negative predictive value 

(NPV) 342–3
prevalence, effect 

of 344–5
negative studies, publication 

of 465
nested case–control 

studies 26, 30
Newman–Keuls test 286
nominal data 192
non-independent data 388
non-inferiority trials 20
non-informative priors 482
non-linear relationships, 

logistic regression 426
non-linear terms, multiple 

regression 416
non-ordered data 180

summarizing 192
non-parametric tests 303
non-randomized 

studies 6–7, 10
Normal distribution 222, 

233
calculating 

probabilities 224
central limit theorem 228
and lognormal 

distribution 233
Pearson’s correlation 

293
and Poisson distribution, 

relationship 
between 218

simple linear 
regression 298
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Standard see Standard 
Normal distribution

and t distribution 232
Normally distributed 

variables 223
Normal plot 282–3
Normal score 223
nQuery Advisor

applications 156
sample size calculation 57, 

68, 72
null hypothesis 246
number needed to harm 

(NNH) 367–8
number needed to treat 

(NNT) 366–8
meta-analysis 474

numerical rating scales 
(NRS) 98

numerical results, 
presenting 142

O
O’Brien–Fleming method, 

early stopping of 
trials 124

observational studies 24
associations 36
confounding 36
meta-analysis 474
research questions 5

odds 346
odds ratio (OR) 268–9

logistic regression 420–1, 
425

meta-analyses 459
95% confi dence 

interval 272
one-sided p percentage 

point, Standard Normal 
distribution 226

one-sided tests (one-tailed 
tests) 246

one-way analysis of 
variance 255, 280–4

table 284
online surveys 87
open questions 83
operating systems 157
operational protocol 52
opinions, questions 

about 82
ordered data 180

summarizing 192
ordinal data 178–9

summarizing 192
ordinal logistic 

regression 426
outcomes

composite 44
continuous and 

categorical 46

data collection 44
surrogate 45

outcome variables 205
simple linear 

regression 297
outliers 116–18, 120
over-dispersion, Poisson 

regression 433

P
paired proportions

estimates and 95% 
confi dence intervals 
for 278

McNemar’s test for 276
papers see journal articles 

and papers
parallel groups 16

advantages and 
disadvantages 17

meta-analysis 474
PASS

applications 156
sample size calculation 57, 

68, 72–3
patient notes, as data 

source 42
Pearson’s correlation 

288–99
percentages, presenting 

statistics 142
percentiles (centiles) 183, 190
per protocol analysis

change of treatment 22
equivalence trials 20
and intention to treat 

analysis 22–3
missing data 23

pie charts 200–1
producing 200

pilot studies
data collection forms 77
questionnaires 88
sample size 70

placebos 14
active 15
double 15

Pocock method, early 
stopping of trials 124

Poisson distribution 216–18
central limit theorem 

210, 228, 231
different means 216–17
formula 216
mean and variance 218
and Normal distribution, 

relationship 
between 218

where it doesn’t hold 218
Poisson outcomes, 

generalized estimating 
equations 438

Poisson regression 432–3
and Cox regression, link 

between 433
polytomous logistic 

regression 426
popularity, and publication 

bias 464
populations and 

samples 56, 206, 240
positively skewed data 198

transforming 336
positive predictive value 

(PPV) 342–3
and likelihood ratios 346
prevalence, effect of 344–5

posterior distributions 481, 
484–5

example 491
software packages 492

posterior interval 486–7
posterior probabilities 344

Bayesian statistics 486
post-test odds 346
power of a study 62, 64–7
prediction, receiver 

operating characteristic 
curves 424–5

predictive data 50
prefi xes, variable 

names 108
presenting research 

fi ndings 127
Bayesian statistics 486
communicating 

statistics 128
computer output, 

managing 140
confi dence 

intervals 144–5
formats 128
journal articles 130–8, 148
meta-analyses 462
multifactorial 

methods 401
numerical results 142
publication process 148
P values 144–5
statistical problems in 

medical papers 153
tables and graphs 146

pre-test odds 346
prevalence, in diagnostic 

studies 344, 351
primary research, 

conducting and 
appraising 3

principal components 
analysis 394, 441–8

prior 480
prior distributions 481–2, 

484–5
example 490
ROBUST checklist 494
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prior probability of 
disease 344

probability 203
basic rules 208
defi nitions 206
importance in medical 

statistics 206
jargon 207
logistic regression 423
properties 208
of success 207

probability density 220
probability 

distributions 203, 210
general features 233
shapes 198
see also specifi c 

distributions
probability theory 206

uncertainty 206
process variables 45
prognostic factors, 

stratifi cation for 10
programs see software 

packages
proportions

angular 
transformation 336

confi dence intervals for 
tests of 270

estimates for tests of 268
large sample 244
95% confi dence 

interval 244
presenting statistics 142
sample size 60, 66

prospective studies 28
protocol see study protocol
psychometrics 92
publication bias 464
publication of research 3

publication process 148
see also journal articles 

and papers
P values 246, 248

analysis of variance 
table 284

and back-
transformation 337

combining 452
defi nition 248
presenting statistics 144–5
reporting 248
sample size 56–7

Q
Q test statistic 455, 458
quadratic terms, multiple 

regression 416–17
quadratic weights, 

kappa 358

qualitative data see 
categorical data

qualitative studies 176
sample size 70

quality of data see data 
quality

quantitative data 176, 178
defi nition 178
summarizing 182–90

quartiles 190
calculation 186
interquartile range 183, 

186, 190
lower 183, 371
upper 183, 371

questionnaires
computer scanning 107
designing 88
example 90
existing 88
measurement scales 96
see also questions

questions
designing 82, 84
research 4

types 4
on sensitive topics 86
types 82–3
see also questionnaires

quota samples 54

R
R2, 418
random effects

estimates, meta-
analyses 460

meta-analysis 456, 458
models 437

see also multilevel 
modelling: serial data

multilevel models 436
randomization in RCTs

audit trail 10
and blinding 10, 14
blocking 11
minimization 11
non-random allocation 10
reasons for 10
stratifi cation for 

prognostic factors 10
between treatment 

groups 10
randomized consent 18
randomized controlled 

trials (RCTs) 6, 8
blinding 14
causal effects 36
comparison group, 

choice of 8
comparison with ‘usual 

care’ 8, 12, 18

consent 12
crossover trials 16–17
intention to treat 

analysis 22
parallel groups 16–17
randomization 10
Zelen randomized 

consent design 18
randomized responses 87
randomized trials 389, 

391–2
randomness, Poisson 

distribution as test 
of 218

random samples 54
random variables 204
range 182, 190

checks 116
rank correlation 275, 288, 

312–40
matrix 294

rank tests 303
rate ratios (RR), Poisson 

regression 432–3
ratio scales 178
RCTs see randomized 

controlled trials
recall bias, case–control 

studies 25
receiver operating 

characteristic (ROC) 
curves 348

logistic regression 424
reciprocal 

transformation 336
back-transforming 339

reference category, 
multifactorial 
methods 397

reference priors 482
regression 288

with adjusted standard 
errors 391

analyses, categorical 
outcomes 48–9

back-transforming 337
coeffi cient 297
Cox proportional 

hazards 428
example 576
linear see linear regression
logistic see logistic 

regression
meta-regression 456
multiple see multiple 

regression
publication bias, adjusting 

for 470–1
simple linear 288–9, 

296, 404
transforming data 334

relative risk 268–9
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chi-squared test for 
trend 275

95% confi dence 
interval 271

reliability, data 
collection 92, 94

repeated measures analysis 
of variance 386

replicated 
measurements 70

research protocol 52
residuals, simple linear 

regression 296
residual variance 280

analysis of variance 
table 284

response rates 86
response variables, simple 

linear regression 297
results, journal 

articles 130–1, 136
CONSORT 

guidelines 300
retrospective studies

case–control studies 24–6
cohort studies 28

RevMan 453
risk difference 268

95% confi dence 
interval 270

risk factors, collecting data 
on 25

ROBUST checklist for 
reading Bayesian 
analyses in 
papers 494–5

rotation, factor analysis 445
rounding 142, 144
routine data 42
R-squared (R2) 418

S
samples

audit 39
and populations 56, 

206, 240
size see sample size

sample size 54, 68, 207
assumptions of 

formulae 68
audit 39
calculating 57–8, 70

presenting 135
case–control studies 24
categorical outcomes 48
choosing a 56
cluster samples 55
comparative studies 

62–5
composite outcomes 44
computer programs 72
data monitoring 125

educational programme, 
research conducted as 
part of an 3

for estimation studies 58
logistic regression 421, 

427
meta-analysis 449
multiple regression 419
outcomes 44
pre-determined 62
replicate 

measurements 70
and statistical 

signifi cance, Pearson’s 
correlation 290–1

too small 56–7
transforming data 336
when calculations aren’t 

needed 70
sampling distributions 241

of the mean 241–2
sampling frames 54
sampling strategies 54
SAS

applications 156
chi-squared test 162, 

164–5
using 161

Satterthwaite 
approximation 252

scales, graphs 147
scanning operators 106
scatter plots, data entry 

checks 116, 120–1
Scheffé test 286
search strategy, meta-

analyses 450
secondary data 42
security issues, storing and 

transporting data 114
sensitive topics, questions 

on 86
sensitivity

analyses, prior 
distributions 482

diagnostic studies 340
calculations 342
prevalence, effect 

of 344–5, 351
receiver operating 

characteristic 
curves 348–9, 424

serial (longitudinal) 
data 378–80

levels of 386
in two groups, 

comparing 380
serial measures, 

non-independence 204
sham treatments 14
sigma 184
signifi cance levels and 

sample size 64–7

signifi cance tests 240, 
246–50

Bayesian statistics 487
and diagnostic studies, 

links between 350
errors 247
kappa 357
P values 248
rationale 246
sample size 56–7, 62
statistical and clinical 

signifi cance 250
steps 247
see also statistical 

signifi cance
signifi cant fi gures 142, 144
sign test

matched pairs 311
meta-analyses 452

simple linear 
regression 288–9, 
296, 404

simple random samples 54
simulations, Bayesian 

statistics 492
single-blind RCTs 14
single imputation of 

missing values 402
single randomized Zelen 

consent 18
advantages and 

disadvantages 19
justifi cation 18

small samples 68, 70
small study effects, 

publication bias 466
snowballing errors 116
software packages 155

active and batch 
mode 156

Bayesian statistics 
479, 492

choosing 158
common 170
costs 157
data collection 76
data entry 102, 104, 106
how they work 156
joining datasets 110
meta-analyses 453, 

459–60
minimization 11
missing data 79, 161
multifactorial 

methods 398, 400
multiple regression 

and analysis of 
variance 413

nature of 156
operating systems 157
output 140
random allocation 10
random sampling 54
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software packages (Cont.)
sample size calculation 57, 

68, 72
scope 157
spreadsheets 166
transferring data 

between 168
using 160–4
variable names and 

labels 108
what they do 156

Spearman’s rho 312–13
specifi city

diagnostic studies 340
calculations 342
prevalence, effect 

of 344–5, 351
receiver operating 

characteristic 
curves 348–9, 424

sponsorship, and publication 
bias 464

spreadsheets 166
data transfer between 

software packages 168
joining datasets 111

SPSS
chi-squared test 162, 165
extracting the relevant 

results 160
log fi les 160
presenting statistics 140–1
scope 157
using 160–1

square root 
transformation 336

back-transforming 337
stability, psychometrics 92
standard deviation 

(SD) 182, 190
and back-transformation  

331, 336–7
calculation 184
log-transformed data 331
one-way analysis of 

variance 280
presenting statistics 142
sample size

for comparative 
studies 64–5

for estimation 
studies 58–9

standard error
of the mean (SE of the 

mean, SEM) 242
of a proportion 244

standardization
direct 372
indirect 372, 374
multiple variables per 

subject 394
standardized mortality ratio 

(SMR) 374–5

Standard Normal deviate 
(SND) 223

Standard Normal 
distribution 222

calculating probabilities 224
converting to the 223
percentage points 226
tables 224–5

Stata
analysis of variance 413
chi-squared test 158, 

162–3, 165
extracting the relevant 

results 160
kappa for inter-rater 

agreement 359
meta-analyses 453
multiple regression 413
presenting statistics 140
sample size 72–3
sample size calculation 

57, 68
scope 157
using 160–1
variable labels 108–9

statistical analysis
data entry checks 116
data monitoring 

committee 123
reporting 140

statistical issues in data 
monitoring 124

statistical power
categorical outcomes 47
composite outcomes 44
visual analogue scales 98

statistical review 148, 153
statistical signifi cance 250

categorical 
outcomes 46–7

publication bias 464
and sample size, Pearson’s 

correlation 290–1
see also signifi cance tests

statistical tests 238
chi-squared test 262

for trend 274
confi dence 

intervals 242–4
correlation and 

regression 288
estimates and 95% 

confi dence 
intervals for paired 
proportions 278

Fisher’s exact test 266
Kaplan–Meier curves 320
logrank test 322–6
McNemar’s test for paired 

proportions 276
multiple comparisons 286
one-way analysis of 

variance 280–5

of proportions 268
rank correlation 312–40
samples and 

populations 240
sign test for matched 

pairs 311
statistical 

signifi cance 246–50
survival data 316
transforming data 330–50
t tests 252–8
Wilcoxon tests 303–8
z test 260

statistics 176
Stat/Transfer 168
stem and leaf plots 195
stopping of trials, early 124
storing data 114
stratifi cation for prognostic 

factors 10
stratifi ed samples 55
studentized range tests 286
study protocol 52

clinical 52
example 53
operational 52
registration of 465
research 52

success, probability of 207
suffi xes, variable names 108
summarizing data 173, 202

categorical data 180, 192
geometric mean, harmonic 

mean, and mode 188
graphs 194
mean and standard 

deviation 184
median and interquartile 

range 186
quantitative data 178, 

182–90
reasons for 174
types of data 176

summary statistics 
two-stage approach, 
cluster samples 390–1

sum of squares 284
superiority trials 20–1

example 21
practicalities 20

surrogate outcomes 45
survival analysis 68
survival data 316

Kaplan–Meier curves 320
syntax fi les 156
systematic reviews 448

T
tables, presenting 

statistics 146
t distribution 232, 252
Teleform 106
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temporal effects, cross-
sectional studies 32

test-retest consistency 92
3D graphs 200
time-to-event data 316
titles of research 

articles, CONSORT 
guidelines 299

traditional reviews 448
transforming data 330

comparing means 332
logarithmic transformation  

330–1
options 336
reasons for 330
regression and 

correlation 334
transporting data 114
trapezium rule 382
trend, chi-squared test 

for 274
trials, number of 207
trim and fi ll method, 

adjusting for publication 
bias 468–9, 471

t tests
for large sample sizes 255
multiple comparisons 286
for paired (matched) data 

(one-sample t test) 256
for two independent 

means (two-sample 
t test) 252–4

2 x 2 tables, estimates for 
tests of proportions  
268–9

two-sided p percentage 
point, Standard Normal 
distribution 226

two-sided tests (two-tailed 
tests) 246

two-way analysis of 
variance 412

type 1 errors 62

sample size 64
signifi cance tests 247

type 2 errors 62
sample size 64
signifi cance tests 247

types of data 176

U
unbalanced designs 413
uncertainty

probability theory 206
statistical tests 240

unequal numbers in 
groups 68

uniform distribution 232
United Kingdom National 

Child Development 
Study (NCDS) 31

unordered data 180
summarizing 192

upper quartile 183
calculation 371

usual care, comparison with
randomized controlled 

trials 8, 12
Zelen randomized 

consent design 18

V
validity

empirical 94
testing 95

value labels 108
variables 176

dependent 205, 297
independent 205
labels 108–9
names 108
Normally distributed 223

variance 182
calculation 184
Poisson distribution 218

variation, coeffi cient of 94
views, questions about 82
visual analogue scales 

(VAS) 98
choice of 99
example 99

vote counting, meta-
analyses 452

W
washout periods 16
weighted kappa 358
Wilcoxon matched pairs 

test 308
Wilcoxon two-sample 

signed rank test 303
WinBUGS 492
within-group residuals 283
within-observers 

consistency 92
within-study variability 

460
World Medical Association 

(WMA) 9

X
XLSTAT 166–7

Y
Yates’ correction 263

Z
Zelen randomized consent 

design 18
zeros, transforming 

data 336
z test for two independent 

proportions 260
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